Scalable Android
Applications in
Kotlin

Write and maintain large
Android application code bases

Myles Bennett

www.bpbonline.com

ii

First Edition 2025
Copyright © BPB Publications, India
ISBN: 978-93-65899-276

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

iii

Dedicated to

My wife and business partner
Heather

and

My daughter Aimi

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

iv

About the Author

Myles Bennett has been working as an Android developer for more than 13 years, and
has worked in mobile development for further 10 years as a Symbian developer. Having
graduated with a Bachelor of Engineering degree in 1995, he has worked for many
high profile clients such as Samsung, Warner Bros Discovery and Sky, to name a few.
In his capacity as a contractor throughout his career, he has been in the unique position
to gain exposure to a huge variety of different working environments. He is therefore
extremely qualified to say what works and what does not work in terms of large software
development projects. As a passionate Kotlin professional, he is currently diversifying
into other areas where Kotlin is making an impact. This includes full stack development,
serverless provisioning and cross platform implementation.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

About the Reviewers

Awais Zaka is a seasoned software developer with more than 20 years of
industry experience. He has contributed to various sectors, including media/
broadcast, telecommunications, and transport, collaborating with companies like
NBCUniversal, Sky, Discovery, O2, BBC, and Samsung. He has also created and
released his own apps across multiple platforms. Awais lives in London with his
wife and three children. In his free time, he enjoys cycling, playing badminton, and
reading.

Zaid Kamil is a Google-certified Android app developer and a professional coding
trainer who has been developing and teaching how to make Android apps for over
a decade. He is the Training Head at Digipodium, a leading IT training institute
in India, where he mentors and guides hundreds of students and professionals in
various domains of technology. He has a rich portfolio of projects in both Java and
Kotlin, using Android and various third-party libraries and APIs. He is also skilled
in the areas of Data Science, Al, Cloud services and Web development, and holds
multiple certifications from IBM and Microsoft in Python. He has a keen interest
in designing and implementing machine learning models to analyze data and
improve business operations. He has worked with cross-functional teams to design
and deploy AI solutions for various domains. Zaid Kamil is passionate about
learning new skills and technology. He constantly updates himself with the latest
trends and developments in the tech industry. He also likes to explore new tools
and frameworks that can enhance his coding abilities. He believes that learning is a
lifelong process and one should never stop growing and improving.

Ayomitide Odunyemi is currently a Principal Engineer at Rad and CTO of Loger,
with 8 years of experience in developing and scaling enterprise applications in
domains such as Fintech, Edutech, Blockchain, Al, and Proptech, with a track record
delivering 27+ production applications scaling to millions of users.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

vi

Acknowledgement

I want to express my deepest gratitude to my family for their unwavering support and
encouragement throughout this book’s writing, especially my wife Heather and my
daughter Aimi.

I am also grateful to BPB Publications for their guidance and expertise in bringing this
book to fruition. It was a long journey of revising this book, with valuable participation
and collaboration of reviewers, technical experts, and editors.

I would particularly like to acknowledge the valuable contributions of my colleague,
Awais Zaka, whose reviews of the last few chapters helped push this book over the line.

Finally, I would like to thank all the readers who have taken an interest in my book and for
their support in making it a reality. Your encouragement has been invaluable.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

vii

Preface

This book introduces the reader to Kotlin and Jetpack Compose for novice or intermediate
Android app developers. It proceeds to build upon this foundation, proposing ideologies
and methods valuable to even seasoned professionals.

Modern technology in the mobile space is advancing at an ever increasing rate. Mobile
applications in turn are becoming more and more complex with multiple features and
user journeys. The subsequent code-bases can quickly become unmanageable if not
organized correctly. Typical symptoms of this can be seen when adding or fixing one thing
breaks another, or when two developers are unable to work on seperate features without
overwriting or conflicting with each others code.

There are many established development paradigms in place to address these issues,
such as clean-code architecture, test-driven development, layering, model-view-intent,
etc., all of which will be covered here, bridging the gap between the theory and practical
application in an Android development environment.

The initial chapters will help all the readers who need to know about Kotlin, Jetpack
compose and introduce feature orientated project organization. Continuing chapters chart
the history of presentation layer architecture leading to working implementations of MVI
and Unit-directional Flow using Kotlin and Jetpack Compose. Further chapters introduce
cross platform development as a means of seperation of concerns. The readers will also
learn the fine details of unit and automation testing with continous integration.

Chapter 1: Introduction to Kotlin for Android - discusses the finer aspects of Kotlin
that makes it stand out from other languages and why it is a great choice for Android
development. From nullable and built-in lambda types through to asynchronous
implementations with Coroutines and everything in between, this chapter provides the
foundation for all the concepts discussed in the entire book.

Chapter 2: Breaking Down App Code with Separation of Concerns - details the break-
down of app code by introducing separation of concerns (SoC). The entire foundation
for this book is based on this concept. This chapter also has a brief look at its benefits,
examines the concept at a high level and discusses the aspects of the Kotlin language that
facilitate its implementation.

Chapter 3: Feature-Oriented Development in Android - continues the theme of SoC, this
chapter discusses the high-level method of splitting an app into conceptual features and

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

viii

how this helps contribute to code quality. It examines the origins of the Feature concept
and provides an example in the form of a case study.

Chapter 4: Clean Code Architecture - looks at the recommended way of further
subdividing those features into modules representing different layers of CCA. It will
describe the original CCA concept in depth and then present a very similar arrangement
adapted specifically for Android, combining it with Data-Domain-Presentation layering.

Chapter 5: Cross-Platform App Development - covers the topic of cross-platform
development and how it relates to large project development. Over the years, there have
been several attempts to unify the development of iOS and Android apps using cross-
platform environments. These attempts have largely failed. This chapter looks briefly
at those platforms, why they failed and discusses the half-way-house of cross-platform
development, Kotlin Multi-mobile (KMM), and how it can be used in a clean code
arrangement for pattern enforcement as well as cross-platform compatibility.

Chapter 6: Dependency Injection - explains the concept and looks at the basic Dependency
Injection (DI) techniques, their benefits, and the popular open-source libraries for
implementing it. It also explains why it is vital for clean code and Test-driven Development.
Further, this chapter provides some code samples, with and without the libraries.

Chapter 7: Introduction to Jetpack Compose - the modern UI toolkit for building native
Android apps. The subsequent chapters rely on some rudimentary knowledge of Jetpack
Compose. This chapter provides some basic concepts for those unfamiliar with Compose.

Chapter 8: Presentation Layer Evolution in Compose - presents the Uni-directional
Flow presentation architecture suited for the latest development paradigms in Android.
In doing so, it charts the journey that led to this arrangement by examining each of the
popular architectures that went before.

Chapter 9: Test-Driven Development with Mocking Libraries for Android - Test-Driven
Development is a software development methodology that emphasizes writing tests before
writing the actual code for a software component. This chapter describes the technique in
detail and introduces the popular open-source mocking libraries used in its execution.

Chapter 10: Kotlin DSL and Multimodule Apps - describes how to create a project from
scratch using Kotlin DSL, suggests a strategy for a module hierarchy and examines an
approach to maintain consistent dependency versioning across modules.

Chapter 11: Creating the Module Hierarchy - introduces a simple method for creating
module hierarchies and suggests an approach in line with solutions highlighted elsewhere
in this book.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

ix

Chapter 12: Networking and APIs in Kotlin - examines use cases for and aspects
of networking in Android. By the end of this chapter, the readers will understand the
concepts of APIs (in particular, RESTful APIs), caching and authentication. This chapter
provides a worked example of a network call using the clean-code architecture and test-
driven development concepts introduced elsewhere in the book.

Chapter 13: Creating UI with Jetpack Compose - continuing from Chapter 7, Introduction
to Kotlin, this chapter examines four important high-level aspects of Jetpack Compose,
namely, Themes, The Scaffold, Navigation and Animation, that help structure the code
and provides a smooth experience to the user. By the end of this chapter, the user will have
a solid foundation in the application of these features and have some ideas for their use in
a multiplatform environment.

Chapter 14: Debugging in Kotlin - explores the powerful debugging capabilities
integrated within Android Studio. It will demonstrate how to utilize breakpoints, watch
variables, and logcat to monitor application behavior and identify issues. This chapter will
also cover advanced topics such as memory profiling, analyzing thread performance, and
leveraging Kotlin-specific debugging tools.

Chapter 15: Test Automation - focuses on automation testing in Kotlin with Jetpack
Compose, providing the essential knowledge and tools to create reliable and maintainable
test suites for applications. A range of topics will be covered, from setting up a testing
environment and writing basic Ul tests to more advanced techniques such as testing state
management, handling asynchronous operations, and integrating testing into a continuous
integration pipeline.

Chapter 16: Building and Distributing Applications - discusses the process of building
and distributing Android apps, exploring the essential steps and best practices to bring
ideas to life and share them with the world. By the end of this chapter, the reader will have
gained insight into creating and uploading an APK to Google Play Store or Amazon App
Store.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/rx7hy1lh

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Scalable-Android-Applications-in-Kotlin.

In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to en-
sure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes in-
volved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

xii

Table of Contents

1. Introduction to Kotlin for Android......... 1
INErOAUCHON ... 1
SEIUCHUTE .. 2
ODJECHIVES ... 2
The reason why Kotlin is a great choice for Android development..........ccccovucueunenceee. 2
Key differences between Kotlin and Java.........cccccccoeiiiiiiiiniiiiiicccccn, 3

INUILSALCHY v 3
TYPC TNFETONCE ...t 5
Functional programmingcccceevvieieinniiiiiiiiiiee et 6

IMMUEADTIIEY .o 6

First-class functions and variables ..., 7

LAMBARAS ...t 7
EXtension fUnCHONS.ccovveueiiiiiiictiiiteteeecec e 9
SCOPING fUNCHONS ...t 10
Built-in collection class eXtensionsccvvevvveieieieuiiiiiiiiiiiieieieccccs s 12
Getters AN SEHETS...... ..ot 13
ONE-lINe fUNCHONS. ...ttt 15
DeLEQALION. ... 15
Lazy initializationcccceeeviviiiiniiieiiiiiiiicictcis et 18
INO 1M0T€ FYPE EFASUTE. ..ot 19
Named and default Parameters............ccocvvevvvviiiiiiiiiciccicse s 20
COMPANION OBDJECES.......ooiiviiiciciciciciiii 21
TNECITAL SCOPE ... 22
COTOULINIES .ot 23
Flows and SEALEFIOTWS.c.cccucuiuiiiiiiiiiiciciciciiit e 23

FIOWS .o 24

SEALEELOTIS ..ot s 24

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

CONCIUSION ..ottt 25
Points t0 1eMEMDETc.ciiiiiiiiciccc e 26
QUESTIONS ... tieiieeiie et ete et e et e tte et e ete e eteeeteesebeeetbeestseebeeeabeeesseassseeasssesseesseenseessseenssennes 26
2. Breaking Down App Code with Separation of Concerns... . . 27
INErOAUCHON ...t 27
SEIUCKUTE ..o 27
ODJECHIVES ...ttt 28
Benefits of SOC ... 28
Kotlin code constructs facilitating SOCcccccoviiiiiiiiiiniiicces 29
SOLID Principles.......cccuiiiiiiiiiiiicii e 30
Single Responsibility PYinCipleccvvveieiiiiiiiiiiiciciciceisiiiciccces s 30
Open/ClLOSEd PFITCIPLE.c.voveeerieiieieisieeetee ettt 32
Liskov Substitution PYiRCIPle..........c.ccueveviieiiiiiiicicicieeieicccce e 34
Interface Segregation PrincCipleccccoveiiiiiiiiiiiiiiiiiiiiiiiicicceccccc 35
Dependency Inversion PYiNCIple..............covveeeiviiiiiiiciiicicieciciiicccieessccens 37
CONCIUSION ...t 38
PoINnts t0 TEMEMDETc.ciiiiiiiiicci e 39
QUESTIONS ...ttt ettt et ee e et e et e eteeeaeeeteeeeteeeeseeeseeesseenseeesssensssenseeenseesnreeenreenns 39
3. Feature-Oriented Development in Android 41
INErOAUCHON .. 41
SEUCHUTE .o 41
ODJECHIVES ..ot 42
Understanding feature module............ccooiiiiiiiiiiiiiiice 42
CONCEPL OTIGINS ..ot 42
Granularity of featurescocoviiiiiiiiicc e 43
Identifying features...........ooiiiiiiiiiiiii e 44
USET JOUIN@YS ...ttt 45
CaSE STUAY ..vviiiiiicc e 45
CONCIUSION ..ottt 51
Points t0 1eMEMDETc.ciiiiiiiicicc e 52
QUESTIONS ... tieiieeiee ettt e et ette et e eteeebeeeteesebeeeaaeestaeebeeeabeeesseassseaassseasseesseenseessseesssennes 52

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

Xiv

4. Clean Code Architecture 53
INErOAUCHON ..o 53
SEUCHUTE ..ot 53
ODJECHIVES ...t 54
The ubiquitous CCA onion diagram.........cccccieuiuicininiiiniciiciniicesesce s 54
Domain-data-presentation layeringcccccoceeiiiiiininiiiiiicccs 55
Combined CCA /layering for ANdroid..........ccccoooiviciiiiininiiciniciniicicsececeeeaaes 56
DOmain JayYerccccviiiiiiiiiiiiiiic e 57

DOmain enttIescccvvivviviiiiiiiiiiiicii i 57
LIS CASESvvviieveeicictcsie ettt s 59
Data JAYeToviiiiciiie e 61
REPOSTEOTIOS.......veiiiiiiiiiicii i 62
Dt SOUTCES ..ot 63
Presentation Jayer ... 64
FIOW Of CONEIOL......oiiiiiiiiiiiiiii e 65
INfrastructure Jayer ..o 69
CONCIUSION ..ot 70
Points t0 1eMEMDETc.ciiiiiiiiiccc e 70
QUESTIONS. ... tieiieeiie ettt e e ete et e ete e ebeeeteesebeeetaeeetaeebeeeabeesssaassseessssensseesseenseessseesssennes 70

5. Cross-Platform App Development 71
INErOAUCHON ... 71
SEIUCKUTE .ot 71
ODJECHIVES ...ttt 72
Cross-platform development OVeIVIEWcccccuiuiiiiiiiiiiniiiiccccces 72

Disadvantages of cross-platform developmentcoccvvvveieiviccncssieiiccccciennes 74
XAIMATIN 1ottt 75
Disadvantages of Xamarin.........c.ccocvovvmiurnsisiniiiiiicceessissscccise s 76
JOMUC vt 78
Disadvantages 0f IONICcvueuevevviiiiiiiiiicieieeeiitcccce s 79
ReaCt NatiVeciiiiiiicc e 80
Disadvantages of React NALIV..............cccvuvueieieiiiiiiiiicciciecicisicicccee s 82

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

X0

FIUEOT ..o 83
Disadvantages of FIUHETccvviiiiiiiiiiiiiiiiiiiiiiicicicsicccc e 84
Compose Multiplatform ... 85
Disadvantages of Compose Multiplatform...........ccccoovvviviviniiiiiiiiiiiiiciccccicii 86
CommOn failures...........covoiiiiiiii e 87
Kotlin multi-mobile ... 88
Disadvantages of KIMMccoocvviiiiiiiiiiieisiciiiiiiccicecs e 89
CONCIUSION ..ot 92
Points tO reMEeMDET ... 92
QUESTIONS ...ttt ettt ee et et e et e e teeeaeeeteeeeteeeeseeeseeeseeenseeesssensssenseeeneeenreeenreenns 92
6. Dependency Injection 93
INErOAUCHON ..o 93
SEUCHUTE .o 93
ODJECHIVES ..ot 94
Overview of Dependency INjection...........cocceeiiiiiiiiiiiiicicccccee e 94
Setter / Method INJECHONcuvuiiieciicii et 95
ConStructor INJECHONovoviviiiiiecc 96
Interface iNJECtiON ..o 96
Field INection.......cccuiieiiiiiiiicccc e 98
Injection framewoOrKs.........ccccoiiiiiiiiiiiiiic e 99
Hilt injection frametworkcceeiviiviiiiiuiicieeiciiiiicccccce st 101
History of Hilt........ccooviiiiiiiiiiiiiiiiiiiiicicccccc s 101
Working with Hilt..........ccoovmeiniiiiiiiiiiiicicicieeetccce e 102

Setting Up Hiltc.couviiiiiiiiiiiiiiiiiciciiiccc 103

Koin injection framewworkccoceeueveieieioiiiiiiciceciecicicce e 106
HiStO1Y Of KOUM..o.oviiiiiiiiicicciccctc s 106
WOrking with KOiflccovvueueiiiiiiiiiiiiiiicicicicccsicc e 107

Pros and cons of Hilt and Koin ... 109
HILE PIOS. oottt s 109
HIlE COMS ot s 109
KOUIL PTOS .ot s 109

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

KOTI COMS oottt ettt ettt e et a e e e e 110

CONCIUSION ..ot 110
POoINts t0 TEMEMDET ... s 111
QUESTIONS ...ttt ettt ettt eete et e e e e et e e aeeeteeeseeesseeeteeenseeeseeenseeesseensseenseeenseeenneens 111
7. Introduction to Jetpack Compose ceesneneaeneneneanes 113
INErOAUCHON ..o 113
SEUCHUTE .o 113
ODJECHIVES ... 114
Overview of Jetpack COMPOSE.........cccuvviiiiiiriiiiiincc e 114
Advantages over traditional VIEWSccourviiiiiiiiiiiiiiicce 115
Getting started with Jetpack COMPOSEcccuucuiuciiiiciiiciiciccecae 116
Some commonly used composables.............ccccoiiiiiiiiiniiii e 119
MOGIfIETS..c..oviiiiiee s 125
Scoped custom composables...........ccciiiiiiiiiniiiii e 128
State management Primitives..........ccocociiiiiiniiiiiicci e 130
CONCIUSION ..o 134
PoINnts t0 TeMEMDETc.ciiiiiiiiiici e 135
QUESTIONS ...ttt eee et eete e et e et e et e e eveeeteeeetaeeseeeaseeesseeesseenseeenseeeseeeseeenseenseen 135
8. Presentation Layer Evolution in Compose o, 137
INErOdUCHON ..o 137
SEUCHUTE .o 137
ODJECHIVES ...t 138
Summary of presentation architecture eVOIUtON...........cccuvvuieciriciniiiiciiiciicccaes 138
Model-View-Controller ..o 139
MoOdel-VIEW-PreSentercoouviiiiiiiiiiiiiiiiiicccii e 141
Model-View-ViewModel............ccoooiiiiiiniiiiiic e 144
LIDEDAIA ... 145
Data Dintding..........ccvvovoiiiiiiiiiiiiiiiiictiicciecc 147
Model-VIeW-INteNt........ccoiiiiiiiiiiiiiii e 149
Key concepts and summary of MV...........ccccovviiiiiiiiiiiiiiiiiciiciciiccccccccs 151
Implementing MVI with Jetpack COMPOSE.......ccccueiuiiiiuciiiiiiciiiciiiciciscceccecaes 152

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

UDF base ViewModel: First PASS..........cccocvvueueieisiiiiiiiiiiiiiicisisiseseisccicsessss s 152
Implementing view in Jetpack COMPOSE.............ccvviviiiiviiiiniiieiiiiiiciciciceecccs 154
UDF base ViewModel: SeCONAd PasScovvuvieieiviiiiiiiiiiicinieieieiiiescciciesie s 156
Using the side effect in the cONtrollerooviviinniiiiiiiiiiiiiiiiicciciiccc 158
UDF base ViewModel: THird Pass............ccccvvueiiieiniiiiiiiicicieisieieisieicccieiee s 162
Disadvantage of the UDF/MVI Patternccoeuveueieuriciniieineinienneieeeeesensieenseaenenns 165
CONCIUSION ..ottt 165
Points to 1eMEeMDETc.ciiiiiiiiiiiicc e 165
QQUESTIONS ... teetieeiieete et et e ettt e et e ete e e te e et e e e tbe e taeestaeeaseeeabeeesseesseensseensaeessaesesaessseenssen 166
9. Test-Driven Development with Mocking Libraries for Androidcceceueuevrucnce 167
INErOAUCHON ..o 167
SEIUCKUTE ..o 167
ODJECHIVES ...ttt 168
The TDD CYCLE ..o 168
Advantages of TDDccooiiiiininiiiiccc e 168
Historical obstacles to TDD ... 169
The bowling game eXample...........ccccvuiuiiiiiiiiiiiiiici e 170
Dependency injection and TDD..........ccccoviiiiiiiiiiiniiiccces 174
MOCKING IIDTATIES ...t 175
MOCKIEO ..o 177
MOCKK ..o 177
Disadvantages of mocking libraries............cccocoeiiiiiiiiniiniiiniccccces 179
Test driving Kotlin flows and StateFIOws.............cccoviiiiininininiiicccccceccnes 179
Problems associated with test-driving flOwscccovvvvvvieiciiiiciiiiicccccc 179
kotlinx-coroutines-test and diSPAtCHErs............c.cocovvviviiccicieisisiiiiicccceeee s 181
Turbine mMocking [iDYATYcceiioiiiiiiiiiiiiiciiict 183
Test driving a UDF ViewModelcccooviiiiiiiiiiiiiccccccnne 185
Advanced flow testing SCENATIOSccccuvvviiiiiiiiiiiiiiiii e 188
CONCIUSION ..ot 189
Points to 1eMEeMDETc.oiiiiiiiiicicc e 190
QUESTIONSeteetieeiee ettt e e et e et e ete e e te e et e e e abe e tbeestaeeaseeeabeeesseesseensseensaeessaessseessseenssenn 190

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

xX0Uiii

10. Kotlin DSL and Multimodule Apps....... . . cereennneneaeasanaas 191
INErOdUCHON ..o 191
SEIUCHUTE .o 191
ODJECHIVES ...t 192
Definition Of DSL.......c.coiiiiiiiiiiiie e 192
Advantages of Kotlin DSL for build scripts........cccocovviiiiiiiiiiiccci, 192
Multimodule project creation.............ccoeviciiiiiiic e 193
The buildSre MOAUIE ..o s 195

Steps for creating the buildSrc MOAUIE..............covvveveeveciciiiciciciiiccee 196
Version Catalogs........ociiiiiiiiiiiiiicici e 200
Updating and adding to the Version Catalog...........cccccoucuviurivcinicininiiciniciniciceicians 203
Recommended IDE Settings ... 206

Optimizing imports ON-the-fllfcccoovvveveniiiiiiiiiicecccc s 206

Project structure SUGGESHIONSveviuvvveriiiiiiiiciciiictccie s 207
CONCIUSION ..ottt 207
Points to 1eMEeMDETc.oiiiiiiiiicicc e 207
QUESTIONS ... veetieeiie ettt et ettt e et e et e e te e et e e s tbe e taeesbaeeaseeeabaeesseesseensseesaeesseesesaessseenseen 208

11. Creating the Module Hierarchy veereeesaeaeneaeaeenes 209
INErOAUCHON ..o 209
SEIUCKUTE ..ot 209
ODJECHIVES ...ttt 210
Creating a feature presentation module ..., 210
Creating data and domain modules...........ccccoeiiiiiiiiiiiice 213
Binding data to domain.........ccooiiiiiiiiiiii e 218

KOIT Dl 219
HIlt DI 222
KAPT .ot 223

KSP oo 225

Key considerationscuwmmmiiiiiiiiicicieisisisietcccces e 227
Splitting out UI from presentation ..o 228
Creating an infrastructure (common) module...........cccccceeueininnininiicicciiniriccenes 230

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

xix

CONCIUSION ..ottt 231
Points to 1eMEeMDETcooiiiiiiiiiic e 231
QQUESTIONSveeiieeiieete ettt ettt e et e ebe e e te e et e e e abe e taeeebaeeaseeeabeessseesseensaeesaeesseessssessseenseen 232
12. Networking and APIs in Kotlin rerereneneneneaeaeaeanas 233
INErOAUCHON ..o 233
SEIUCKUTE ..ot 233
ODJECHIVES ...ttt 234
Networking in ANdroidccccocoiiiiiiiiii e 234
Definition of an APcccoviii e 235
Key aspects Of APISccvovviiiiiiiiiiiciiiiiiiicicccccc s 236
Common types Of APIS........c.ccucveveiiioiiiiiiiiceiciciectcc s 237
RESTHUL APIS ...ttt 238
Networking IIbraries ... 239
Android framework (JAVA.NEL) ... 240
OKHEED oot 241
VOILEY ..o 243
ROt ..o 244
KEOT covtetett 245
Authentication and SECUTILYcccuviiiiiiiiiiiciiicc s 246
APTKEYS.c.oiiiiiiieiit s 246
OAULN FOKENS ..o s 247
Data module SetUP........cciiiiiiiiccc e 248
Build SCript UPAALES.........ovveviiiiiiicicicicct 248
Data Classes ... 250
Test-driving the network call..........ccccociiiiiiiciiiiicae 251
MOCKENGINE. ...ttt 252
USE-CASE TNPUEL POTE oottt 253
THE fIFSt EESE .ot 255
CaChING ... 258
HEP CACRING ..ot 259
CUSEOM CACRING ..ot 259

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

XX

Test-driving the USe CASEScoucuiiiciiiiiiiiicii s 260
DI module binding.........cccooiviiiiiiiiiiiiii e 264
HIIE oo 264
KOTI v 265
CONCIUSION ..ot 266
Points to 1eMEeMDETcciiiiiiiiiccc e 266
QQUESTIONS ... teetieeiie ettt ettt e et e ebe e e te e et e e e abe e tbeesbaeeabeeeabeessseesseensseesaeessaeseseessseenssen 267
13. Creating UI with Jetpack Compose......... . . rerereneneneneaeaeaeanas 269
INErOAUCHON ... 269
SEIUCKUTE ..ot 269
ODJECHIVES ...ttt 270
TREIMIES......oieiii e 270
COLOT SCHEME.........oeiiiic 272
TYPOZTAPRY ..ot 273
FONES oot 274
FONMEFAMILY ..ot 275
TOXESHYIC ...t 276
TYPOTAPRY .o 276

SHAPES ... s 277
The SCAfOld.......oiuiiiiciicc e 279
TOPAPPBAT() o 282
BOHOMAPDBAT() .ottt 284
DrawerComtent() ...ttt 285
FAD() .o 285
SNACKHOSH() ..o 286
SCAfFOLA() ..ot 287
NaAVIZATION. ...ttt 288
The Navigation component (Ie§ACY)cccovvvvviiiiiiiiiiiniiiiiiiiiicccceccc i 288
NAvIGAtION COMPOSEovuvvviieieieiiiciiiiietitsieie et s 290
Navigation Compose With parameters............ccovevvvviecciiciiiiiiieiccccsinnas 292
Navigation Compose with SCaffoldccovvviviviiiiicciiciiiiiicccceeec 296

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

xxi

Navigating in and out of the SCAffOldcccovvvverveeneiiiiiiiiceeece 297
ANIMATION 1ttt 300
ANIMALIONSPEC ..ot 300
ANIMALEAVISIDILIEY ..o 302
Transition ANIMATIONS ..ot 303
Multiplatform considerations ... 305
CONCIUSION ..ot 306
Points to 1eMEeMDETc.ooiiiiiiiiicic e 307
QQUESTIONS ... teetieeiieeie ettt ettt e et e ebe e e te e et e e e abe e tbe e taeeaseeeaseeesseesseensseensaeesseessseessseenssenn 307
14. Debugging in Kotlin... cereennneneneneaenes 309
INErOAUCHON ... 309
SEIUCKUTE ..ot 309
ODJECHIVES ...ttt 310
Android device bridgeccooviiiiiiiiiiiiiiii e 310
BreakpOintsccccririiiiiiic 311
Conditional DYCAKPOINES.ceuevirveuiiiieiiiisiciiisictect ettt 313
Exception DYeaKPOTNES............ccoovvuiueieieieiciciciccccce e 313

Set an exception Breakpointccccovvecivieiinnieiiieiiiecisect e 314

WatCh @XPIESSIONS ..ot s 315
Evaluate eXpression ... 316
Profiling tOOIS.......ccuiuiiiiiiiiccccc e 316
Logeat IoZZINgccoviviiiiiiiiiiiic e 319
TEMIDET ..o 321
Other conSIderations............coucueuicuiiriiiiinicercece s 323
CONCIUSION ..o 323
Points to reMEeMDET ..o 323
QUESTIONS ... veetieeiie ettt et ettt e et e et e e te e et e e s tbe e taeesbaeeaseeeabaeesseesseensseesaeesseesesaessseenseen 324
15. Test Automation crereresnenernsaerennenes 325
INErOAUCHON ... 325
SEIUCKUTE ..o 325
ODJECHIVES ...ttt 326

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

xxii

ESPI@SSO ..ttt 326
COMPOSE LT ...ttt 327
CompoSeTEStRULE..........cooviiiiiiicic e 329
Finders, Matchers and ASSEIteTIS.ooovueuieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesseeeeeesesesessseseens 330
FINACES ..o 330
MUALCHETS ..o 330
ASSETEOTS ..ottt s 331
The RODOt PAtterncuviiiiiiiciiiccc s 331
Advantages of the RoDOt PATLEINcccvviuiveeiieieiciiiiiicccccee st 337
COdE COVETAZEcuvviiiiiiii s 338
Continuous INtEZIatioNcccuvviiiiiiiiiiccii e 339
CONCIUSION ..ottt 340
Points to reMEeMDETcoovoiiiiiicc 340
QUESTIONS ... ettt ettt ete ettt e et e et e et e e eveeeteeeetaeeseeeaseeesseeesseensesenseeeseeenseeenseensneen 341
16. Building and Distributing Applications v eaens 343
INETOAUCHON ..ottt 343
SEIUCHUTE ..o 343
ODJECHIVES ...t 344
Preparing to release an Android appccccoeeueueinininiiiiicccicnc e 344
Setting version iMfOrMALIONcccccveviiiieieieiceiiiiiicie e 344
Android Application PACKAZe...............cccovvuvuvieieiiiiiiiiiiicicicisic st 345
ANAroid APP DUNALE ...ttt 345
KOYSEOTC .o 346
Creating a keystore with Android StUAIO.............cccovvviviiiiiiiiiiiiciiccccc 347
Creating a keystore on the Command LiNeccccccvvvreniiiiiiicccessieieicccicnnes 349
Configuring building and signing in Gradle................ccccccvvvvviviiiiiiinicciiiiiiiiecinns 351
Building and signing 0m Cl...........ccveiiiiiiiiiiiiiicieeeeetcce s 352
BUTIA fIATOTS ...t 356
Distribution portals..........coiiiiiiiiiii e 357
GO0gle Play StOTeccuiuiiiiiiiiiicccc e 358
Create Developer ACCOUNEcvveviviieiicieieieieieictcccise e 358

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

Releasing an app on Google Play StoTe...........ccccovieiiiicininininisicccceecccnnes 359
Finish setting up Your applicationccceeeviiiiiiviiiiniiieiciciccscics s 359
Internal/closed FESHING vttt 361

Adding countries (closed 0nly)cccovuvvviiiiiiiiiiiiiiiiciiiccc 361
AAAING LESEOTS ..o s 361
Creating new 1elefseccvvvveivviiiieueiciiiiiiiiiiicie e 361
Send the release to Google for review (Closed 0nly)cccccccccviciniviniiiciccicnann. 364
Pre-reQistrationcooviviiieiiiiiiiiiiiiiicicecse 364
APPLY fOr PrOQUCHION ... 364
Production application PrOCESS............ccueimeivirieiiiiieisinieiiieiiteeetsett e 365

AMAZON APP STOTCviiiiiiiiii et 365
Creating Developer ACCOUNLEcocvcviviiieiiiiiiiiiiiiiciccccicc s 365
Releasing an app on Amazon App SEOTe...........ceevvivioviveieieieiiiiiiciceeeees 366

CONCIUSION ..ot 373

PoINnts t0 TeMEMDETc.ciiiiiiiiiici e 374

QUESTIONS ...ttt ettt et ete et e et e eete e et e e eaveeeteeeetaeeseeeseeesseeesseensesenseeeseeenseeenseensneen 374

Index375-386

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

CHAPTER 1

Introduction to
Kotlin for Android

Introduction

This book describes how to build, from scratch, large, multi-feature apps using Kotlin and
Jetpack Compose. It achieves this by combining modern paradigms and techniques, all of
which will be described here.

Existing commercial Android code tends not to employ a scalable framework suitable for
these types of applications. An important reason for this is that these projects are usually
grown from one of the Android Studio new project wizards.

All these wizards are designed to showcase certain app features in a Hello World fashion.
They typically produce code with a single module, app, containing a single Activity and
perhaps a Fragment with XML layouts and Android Views. They do not present any kind
of scalable structure.

What typically happens with large applications that start in this way is that over time,
different developers come and go, usually bolting on the popular paradigm at the time.
The resulting code becomes Frankenstein’s Monster; a tangle of fragile spaghetti code
that is very difficult to read, likely to break with any changes and that screams out to be
rewritten. Too often though, clients are reluctant to do this as the existing code already
represents a significant investment.

Throughout his book, we examine how built-in Kotlin features help to address this by
breaking up the code in a recognizable fashion making initial creation, maintenance and
updating quicker and easier whilst retaining quality.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

2 Scalable Android Applications in Kotlin

Firstly though, this chapter examines the differences between Kotlin and Java and discusses
why it is a great choice for Android development.

Structure

This chapter covers the following topics:

* The reason why Kotlin is a great choice for Android development

* Key differences between Kotlin and Java

Objectives

By the end of this chapter, not only will the answer to why Kotlin is a great language
for Android be apparent, you will also be introduced to the key concepts of the Kotlin
language that make it distinct from other languages. In particular, you will become familiar
with functional programming, null safety, extension, and scoping functions, asynchronous
programming with coroutines, and much more.

The reason why Kotlin is a great choice for
Android development

Kotlin is a modern, open-source programming language that is designed to be concise,
expressive, and safe. It has quickly gained popularity in the Android development
community, as it offers a number of benefits over Java, the traditional language used for
Android development.

Here are some of the reasons why Kotlin is a great choice for Android development:

e Interoperability with Java: Kotlin is designed to be fully interoperable with Java,
which means that existing Java code can be easily integrated into Kotlin projects
and vice versa. This makes it easy for developers who are already familiar with
Java to start using Kotlin without having to learn a completely new language.

e Concise and expressive syntax: Kotlin has a clean and concise syntax that makes
it easy to read and write. It also supports several modern programming features
such as lambdas, extension functions, and operator overloading that can make
code more expressive and concise.

* Increased productivity: Kotlin’s concise syntax, powerful features, and strong
type system can help increase developer productivity. It can reduce the amount of
boilerplate code that developers need to write and can make it easier to refactor
code and catch errors early. Kotlin’s other language features, such as extension
functions and data classes, can help developers write code more quickly and
efficiently. This can lead to increased productivity and faster development time.

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

Introduction to Kotlin for Android 3

e Enhanced performance: Kotlin’s performance is at par with Java, and in some
cases, it can even outperform it. This is due to Kotlin’s efficient bytecode, which is
optimized for performance.

e Improved code safety: Kotlin has several features that can help improve code
safety, such as null safety, type inference, and data classes. These features can
help prevent common runtime errors and make it easier to write code that is more
robust and maintainable. One of the most significant problems with Java is the
potential for null pointer exceptions, which can cause crashes and other issues
in Android apps. Kotlin provides null safety features that help developers avoid
these issues and write safer code.

* Extension functions and properties: Kotlin allows developers to extend existing
classes with new functions and properties without having to create new subclasses.
This makes it easy to add new features to existing code without having to modify
the original code.

e Coroutines: Java has historically relied on third-party solutions and plugins to
deal with asynchronous code and background tasks. Android initially provided its
own solution in the form of AsyncTask. Later, RxJava became popular but could
be difficult to use due to its chained interface pattern. A value spawned in the first
part of the chain would become unavailable in a later part of the chain making
complex tasks messy to write. Kotlin provides built-in support for coroutines,
which makes it easier to write asynchronous code. This can be especially useful in
Android development, where asynchronous operations are common.

* Android Studio support: Kotlin is fully supported in Android Studio, which is
the primary development environment for Android development. This means that
developers can take advantage of Kotlin’s features and benefits within a familiar
and powerful development environment.

Kotlin is a great choice for Android development due to its concise syntax, interoperability
with Java, null safety, enhanced performance, and improved productivity. The adoption
rate by developers has already made Kotlin and Android synonymous (despite Kotlin also
being picked up for backend development now).

Key differences between Kotlin and Java

Whilst there are many differences between Kotlin and Java, in this section we will describe
the features of Kotlin that have been found as the most useful in comparison to Java. It
is by no means a comprehensive examination of the Kotlin language. There are plenty of
existing texts dedicated to that.

Null safety

This is a key feature of Kotlin that helps prevent null pointer exceptions at runtime. In
Kotlin, null safety is achieved through a combination of nullable and non-null types, safe

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

4 Scalable Android Applications in Kotlin

call operator, and null coalescing, that is, Kotlin provides more advanced type inference
capabilities compared to Java. Kotlin’s compiler can deduce types based on initializers,
expressions, and other context, reducing the need for explicit type declarations. This
contributes to more concise and readable code. Java’'s type inference is more limited,
primarily focused on simplifying the usage of generics with the diamond operator..

In Kotlin, every variable has a type, that can either be nullable or non-null. A nullable type
is denoted by the ? symbol at the end of the type, while a non-null type does not have the
? symbol. For example, String? Is a nullable type, while String is a non-null type.

When a variable is declared as nullable, the compiler forces the developer to handle the
possibility of the variable being null. This means that the developer has to use a safe call
operator ?. or elvis operator ?: to avoid a NullPointerException at runtime.

The safe call operator ?. is used to safely access properties or methods on nullable
variables. If the variable is null, the expression will return null, instead of throwing a
NullPointerException. For example:

1. val str: String? = null
2. val length = str?.length

The elvis operator ?: is used to provide a default value for a nullable variable if it is null.
For example:

1. val str: String? = null

2. val length = str?.length ?: © // will be @ if str is null
The equivalent Java code would look like this:

1. if (str != null) { // not null

2. length = str.length();
3. } else {

4. length = 0;

5. }

This becomes extremely powerful when mapping complex data from backend APIs
where all fields are nullable. Consider this (somewhat contrived) example given an object
received of type DetailResponse:

1. data class DetailResponse(
val website: Website? = null

. data class Website(

val uri: Uri? = null

N oo bhwWwN

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

Introduction to Kotlin for Android 5

8.

9. data class Uri(

10. val url: String? = null
11.)

In the instance where you were only interested in the final URL string, then the mapping
would look like this:

1. data class DetailDomain (val url: String)

. fun responseToDomain(detailResponse: DetailResponse?):DetailDomain {
return DetailDomain(detailResponse?.website?.uri?.url ?: "")

ui A W N

}

In fact, Kotlin provides an extended function to replace the elvis operator just for strings,
orEmpty(), so the return statement could look like this:

1. return DetailDomain(detailResponse?.website?.uri?.url.orEmpty())

Kotlin also provides a non-null assertion operator !'! which tells the compiler that a
nullable variable is not null. This can be useful in certain situations, but should be used
with caution, as it can still result in a NullPointerException at runtime if the variable is
actually null. In fact, we would only recommend its use in unit tests (more on this later).
There is a reason it is a double-exclamation mark — to draw attention to it in code reviews.

Type inference

Type inference in Kotlin and Java refers to the ability of the compiler to automatically
determine the type of a variable or expression based on the context. However, there are
some differences in how type inference is handled in Kotlin compared to Java.

In Java, type inference was introduced in Java 8 with the introduction of the diamond
operator (<>) for generics. The primary purpose of type inference in Java is to simplify the
usage of generics. For example:

1. List<Integer> numbers = new ArraylList<>();
2. // Type inference with diamond operator

In this Java code, the diamond operator (<>) allows the type Integer to be inferred based
on the declaration of numbers on the left-hand side.

The Java type inference is more limited compared to Kotlin. Java still requires explicit type
declarations in most cases, and the compiler’s ability to infer types is more restricted than
in Kotlin. In Kotlin, the compiler has more powerful type inference capabilities, which
allows it to deduce the type of a variable based on its initializer or its usage. This means
that you can omit explicit type declarations in many cases, reducing verbosity and making
the code more concise. For example:

Kup ksigzke

http://helion.pl/page354U~rt/e_43i4_ebook

