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Preface

This book introduces the reader to Kotlin and Jetpack Compose for novice or intermediate
Android app developers. It proceeds to build upon this foundation, proposing ideologies
and methods valuable to even seasoned professionals.

Modern technology in the mobile space is advancing at an ever increasing rate. Mobile
applications in turn are becoming more and more complex with multiple features and
user journeys. The subsequent code-bases can quickly become unmanageable if not
organized correctly. Typical symptoms of this can be seen when adding or fixing one thing
breaks another, or when two developers are unable to work on seperate features without
overwriting or conflicting with each others code.

There are many established development paradigms in place to address these issues,
such as clean-code architecture, test-driven development, layering, model-view-intent,
etc., all of which will be covered here, bridging the gap between the theory and practical
application in an Android development environment.

The initial chapters will help all the readers who need to know about Kotlin, Jetpack
compose and introduce feature orientated project organization. Continuing chapters chart
the history of presentation layer architecture leading to working implementations of MVI
and Unit-directional Flow using Kotlin and Jetpack Compose. Further chapters introduce
cross platform development as a means of seperation of concerns. The readers will also
learn the fine details of unit and automation testing with continous integration.

Chapter 1: Introduction to Kotlin for Android - discusses the finer aspects of Kotlin
that makes it stand out from other languages and why it is a great choice for Android
development. From nullable and built-in lambda types through to asynchronous
implementations with Coroutines and everything in between, this chapter provides the
foundation for all the concepts discussed in the entire book.

Chapter 2: Breaking Down App Code with Separation of Concerns - details the break-
down of app code by introducing separation of concerns (SoC). The entire foundation
for this book is based on this concept. This chapter also has a brief look at its benefits,
examines the concept at a high level and discusses the aspects of the Kotlin language that
facilitate its implementation.

Chapter 3: Feature-Oriented Development in Android - continues the theme of SoC, this
chapter discusses the high-level method of splitting an app into conceptual features and
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how this helps contribute to code quality. It examines the origins of the Feature concept
and provides an example in the form of a case study.

Chapter 4: Clean Code Architecture - looks at the recommended way of further
subdividing those features into modules representing different layers of CCA. It will
describe the original CCA concept in depth and then present a very similar arrangement
adapted specifically for Android, combining it with Data-Domain-Presentation layering.

Chapter 5: Cross-Platform App Development - covers the topic of cross-platform
development and how it relates to large project development. Over the years, there have
been several attempts to unify the development of iOS and Android apps using cross-
platform environments. These attempts have largely failed. This chapter looks briefly
at those platforms, why they failed and discusses the half-way-house of cross-platform
development, Kotlin Multi-mobile (KMM), and how it can be used in a clean code
arrangement for pattern enforcement as well as cross-platform compatibility.

Chapter 6: Dependency Injection - explains the concept and looks at the basic Dependency
Injection (DI) techniques, their benefits, and the popular open-source libraries for
implementing it. It also explains why it is vital for clean code and Test-driven Development.
Further, this chapter provides some code samples, with and without the libraries.

Chapter 7: Introduction to Jetpack Compose - the modern UI toolkit for building native
Android apps. The subsequent chapters rely on some rudimentary knowledge of Jetpack
Compose. This chapter provides some basic concepts for those unfamiliar with Compose.

Chapter 8: Presentation Layer Evolution in Compose - presents the Uni-directional
Flow presentation architecture suited for the latest development paradigms in Android.
In doing so, it charts the journey that led to this arrangement by examining each of the
popular architectures that went before.

Chapter 9: Test-Driven Development with Mocking Libraries for Android - Test-Driven
Development is a software development methodology that emphasizes writing tests before
writing the actual code for a software component. This chapter describes the technique in
detail and introduces the popular open-source mocking libraries used in its execution.

Chapter 10: Kotlin DSL and Multimodule Apps - describes how to create a project from
scratch using Kotlin DSL, suggests a strategy for a module hierarchy and examines an
approach to maintain consistent dependency versioning across modules.

Chapter 11: Creating the Module Hierarchy - introduces a simple method for creating
module hierarchies and suggests an approach in line with solutions highlighted elsewhere
in this book.
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Chapter 12: Networking and APIs in Kotlin - examines use cases for and aspects
of networking in Android. By the end of this chapter, the readers will understand the
concepts of APIs (in particular, RESTful APIs), caching and authentication. This chapter
provides a worked example of a network call using the clean-code architecture and test-
driven development concepts introduced elsewhere in the book.

Chapter 13: Creating UI with Jetpack Compose - continuing from Chapter 7, Introduction
to Kotlin, this chapter examines four important high-level aspects of Jetpack Compose,
namely, Themes, The Scaffold, Navigation and Animation, that help structure the code
and provides a smooth experience to the user. By the end of this chapter, the user will have
a solid foundation in the application of these features and have some ideas for their use in
a multiplatform environment.

Chapter 14: Debugging in Kotlin - explores the powerful debugging capabilities
integrated within Android Studio. It will demonstrate how to utilize breakpoints, watch
variables, and logcat to monitor application behavior and identify issues. This chapter will
also cover advanced topics such as memory profiling, analyzing thread performance, and
leveraging Kotlin-specific debugging tools.

Chapter 15: Test Automation - focuses on automation testing in Kotlin with Jetpack
Compose, providing the essential knowledge and tools to create reliable and maintainable
test suites for applications. A range of topics will be covered, from setting up a testing
environment and writing basic Ul tests to more advanced techniques such as testing state
management, handling asynchronous operations, and integrating testing into a continuous
integration pipeline.

Chapter 16: Building and Distributing Applications - discusses the process of building
and distributing Android apps, exploring the essential steps and best practices to bring
ideas to life and share them with the world. By the end of this chapter, the reader will have
gained insight into creating and uploading an APK to Google Play Store or Amazon App
Store.
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CHAPTER 1

Introduction to
Kotlin for Android

Introduction

This book describes how to build, from scratch, large, multi-feature apps using Kotlin and
Jetpack Compose. It achieves this by combining modern paradigms and techniques, all of
which will be described here.

Existing commercial Android code tends not to employ a scalable framework suitable for
these types of applications. An important reason for this is that these projects are usually
grown from one of the Android Studio new project wizards.

All these wizards are designed to showcase certain app features in a Hello World fashion.
They typically produce code with a single module, app, containing a single Activity and
perhaps a Fragment with XML layouts and Android Views. They do not present any kind
of scalable structure.

What typically happens with large applications that start in this way is that over time,
different developers come and go, usually bolting on the popular paradigm at the time.
The resulting code becomes Frankenstein’s Monster; a tangle of fragile spaghetti code
that is very difficult to read, likely to break with any changes and that screams out to be
rewritten. Too often though, clients are reluctant to do this as the existing code already
represents a significant investment.

Throughout his book, we examine how built-in Kotlin features help to address this by
breaking up the code in a recognizable fashion making initial creation, maintenance and
updating quicker and easier whilst retaining quality.
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2 Scalable Android Applications in Kotlin

Firstly though, this chapter examines the differences between Kotlin and Java and discusses
why it is a great choice for Android development.

Structure

This chapter covers the following topics:

* The reason why Kotlin is a great choice for Android development

* Key differences between Kotlin and Java

Objectives

By the end of this chapter, not only will the answer to why Kotlin is a great language
for Android be apparent, you will also be introduced to the key concepts of the Kotlin
language that make it distinct from other languages. In particular, you will become familiar
with functional programming, null safety, extension, and scoping functions, asynchronous
programming with coroutines, and much more.

The reason why Kotlin is a great choice for
Android development

Kotlin is a modern, open-source programming language that is designed to be concise,
expressive, and safe. It has quickly gained popularity in the Android development
community, as it offers a number of benefits over Java, the traditional language used for
Android development.

Here are some of the reasons why Kotlin is a great choice for Android development:

e Interoperability with Java: Kotlin is designed to be fully interoperable with Java,
which means that existing Java code can be easily integrated into Kotlin projects
and vice versa. This makes it easy for developers who are already familiar with
Java to start using Kotlin without having to learn a completely new language.

e Concise and expressive syntax: Kotlin has a clean and concise syntax that makes
it easy to read and write. It also supports several modern programming features
such as lambdas, extension functions, and operator overloading that can make
code more expressive and concise.

* Increased productivity: Kotlin’s concise syntax, powerful features, and strong
type system can help increase developer productivity. It can reduce the amount of
boilerplate code that developers need to write and can make it easier to refactor
code and catch errors early. Kotlin’s other language features, such as extension
functions and data classes, can help developers write code more quickly and
efficiently. This can lead to increased productivity and faster development time.
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e Enhanced performance: Kotlin’s performance is at par with Java, and in some
cases, it can even outperform it. This is due to Kotlin’s efficient bytecode, which is
optimized for performance.

e Improved code safety: Kotlin has several features that can help improve code
safety, such as null safety, type inference, and data classes. These features can
help prevent common runtime errors and make it easier to write code that is more
robust and maintainable. One of the most significant problems with Java is the
potential for null pointer exceptions, which can cause crashes and other issues
in Android apps. Kotlin provides null safety features that help developers avoid
these issues and write safer code.

* Extension functions and properties: Kotlin allows developers to extend existing
classes with new functions and properties without having to create new subclasses.
This makes it easy to add new features to existing code without having to modify
the original code.

e Coroutines: Java has historically relied on third-party solutions and plugins to
deal with asynchronous code and background tasks. Android initially provided its
own solution in the form of AsyncTask. Later, RxJava became popular but could
be difficult to use due to its chained interface pattern. A value spawned in the first
part of the chain would become unavailable in a later part of the chain making
complex tasks messy to write. Kotlin provides built-in support for coroutines,
which makes it easier to write asynchronous code. This can be especially useful in
Android development, where asynchronous operations are common.

* Android Studio support: Kotlin is fully supported in Android Studio, which is
the primary development environment for Android development. This means that
developers can take advantage of Kotlin’s features and benefits within a familiar
and powerful development environment.

Kotlin is a great choice for Android development due to its concise syntax, interoperability
with Java, null safety, enhanced performance, and improved productivity. The adoption
rate by developers has already made Kotlin and Android synonymous (despite Kotlin also
being picked up for backend development now).

Key differences between Kotlin and Java

Whilst there are many differences between Kotlin and Java, in this section we will describe
the features of Kotlin that have been found as the most useful in comparison to Java. It
is by no means a comprehensive examination of the Kotlin language. There are plenty of
existing texts dedicated to that.

Null safety

This is a key feature of Kotlin that helps prevent null pointer exceptions at runtime. In
Kotlin, null safety is achieved through a combination of nullable and non-null types, safe
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call operator, and null coalescing, that is, Kotlin provides more advanced type inference
capabilities compared to Java. Kotlin’s compiler can deduce types based on initializers,
expressions, and other context, reducing the need for explicit type declarations. This
contributes to more concise and readable code. Java’'s type inference is more limited,
primarily focused on simplifying the usage of generics with the diamond operator..

In Kotlin, every variable has a type, that can either be nullable or non-null. A nullable type
is denoted by the ? symbol at the end of the type, while a non-null type does not have the
? symbol. For example, String? Is a nullable type, while String is a non-null type.

When a variable is declared as nullable, the compiler forces the developer to handle the
possibility of the variable being null. This means that the developer has to use a safe call
operator ?. or elvis operator ?: to avoid a NullPointerException at runtime.

The safe call operator ?. is used to safely access properties or methods on nullable
variables. If the variable is null, the expression will return null, instead of throwing a
NullPointerException. For example:

1. val str: String? = null
2. val length = str?.length

The elvis operator ?: is used to provide a default value for a nullable variable if it is null.
For example:

1. val str: String? = null

2. val length = str?.length ?: © // will be @ if str is null
The equivalent Java code would look like this:

1. if (str != null) { // not null

2. length = str.length();
3. } else {

4. length = 0;

5. }

This becomes extremely powerful when mapping complex data from backend APIs
where all fields are nullable. Consider this (somewhat contrived) example given an object
received of type DetailResponse:

1. data class DetailResponse(
val website: Website? = null

. data class Website(

val uri: Uri? = null

N oo bhwWwN
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8.

9. data class Uri(

10. val url: String? = null
11. )

In the instance where you were only interested in the final URL string, then the mapping
would look like this:

1. data class DetailDomain (val url: String)

. fun responseToDomain(detailResponse: DetailResponse?):DetailDomain {
return DetailDomain(detailResponse?.website?.uri?.url ?: "")

ui A W N

}

In fact, Kotlin provides an extended function to replace the elvis operator just for strings,
orEmpty(), so the return statement could look like this:

1. return DetailDomain(detailResponse?.website?.uri?.url.orEmpty())

Kotlin also provides a non-null assertion operator !'! which tells the compiler that a
nullable variable is not null. This can be useful in certain situations, but should be used
with caution, as it can still result in a NullPointerException at runtime if the variable is
actually null. In fact, we would only recommend its use in unit tests (more on this later).
There is a reason it is a double-exclamation mark — to draw attention to it in code reviews.

Type inference

Type inference in Kotlin and Java refers to the ability of the compiler to automatically
determine the type of a variable or expression based on the context. However, there are
some differences in how type inference is handled in Kotlin compared to Java.

In Java, type inference was introduced in Java 8 with the introduction of the diamond
operator (<>) for generics. The primary purpose of type inference in Java is to simplify the
usage of generics. For example:

1. List<Integer> numbers = new ArraylList<>();
2. // Type inference with diamond operator

In this Java code, the diamond operator (<>) allows the type Integer to be inferred based
on the declaration of numbers on the left-hand side.

The Java type inference is more limited compared to Kotlin. Java still requires explicit type
declarations in most cases, and the compiler’s ability to infer types is more restricted than
in Kotlin. In Kotlin, the compiler has more powerful type inference capabilities, which
allows it to deduce the type of a variable based on its initializer or its usage. This means
that you can omit explicit type declarations in many cases, reducing verbosity and making
the code more concise. For example:
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