Principles of
Software Architecture
Modernization

Delivering engineering excellence with the art of fixing
microservices, monoliths, and distributed monoliths

The Author:
Diego Pacheco

Co-author:

Sam Sgro

www.bpbonline.com

ii
Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor BPB Online or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online
cannot guarantee the accuracy of this information.

First published: 2024

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55519-535

www.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

11}

About the Authors

The Author: Diego Pacheco is a seasoned, experienced Brazilian software architect,
author, speaker, technology mentor, and DevOps practitioner with more than 20+ years of
solid experience. I've been building teams and mentoring people for more than a decade,
teaching soft skills and technology daily. Selling projects, hiring, building solutions,
running coding dojos, long retrospectives, weekly 1:1s, design sessions, code reviews
and my favorite debate club: architects community of practices and development groups
for more than a decade. Live, breathe and practice real agile since 2005, coaching teams
help many companies to discover better ways to work using Lean, Agile principles and
methods like XP and DTA. I've led complex architecture teams and engineering teams at
scale guided by SOA principles, using a variety of open-source languages like Java, Scala,
Rust, Go, Python, Groovy, JavaScript and TypeScript, cloud providers like AWS Cloud and
Google GCP, amazing solutions like Akka, ActiveMQ, Netty, Tomcat and Gatling, NoSQL
databases like Cassandra, Redis, Elasticache Redis, Elasticsearch, Opensearch, RabbitMQ,
libraries like Spring, Hibernate, and Spring Boot and also the NetflixOSS Stack: Simian
Army, RxJava, Karyon, Dynomite, Eureka, and Ribbon. I've implemented complex security
solutions at scale using AWS KMS, S3, Containers (ECS and EKs), Terraform and Jenkins.
Over a decade of experience as a consultant, coding, designing, training people at big
customers in Brazil, London, Barcelona, India, and the USA(Silicon Valley and Midwest).
I have a passion for functional programming and distributed systems, NoSQL Databases,
an obsession for Observability, and always learning new programming languages.

Currently working as a principal Software Architect with AWS public cloud, Kubernetes/
EKS, performing complex cloud migrations, library migrations,server and persistence
migrations, security at scale with multi-level envelope encryption solutions using KMS
and S3. While still hiring, teaching, mentoring and growing engineers and architects.
During my free time, I love playing with my daughter, playing guitar, gaming, coding
pocs and blogging.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

iv

Co-author: Sam Sgro is an experienced technologist, architect, and engineering leader
with decades of hands on experience. Sam is a strong believer in how combining logic and
reason with the right principles can bring about a better world, and his career has been
about applying architecture and engineering in the best possible way, solving complex
business and technology problems to help people.

Sam’s early background was a mix of both molecular biology and computer science,
working in projects spanning open source cryptography and high performance computing.
Slowly transitioning from having fun with Solaris and Linux to Java software engineering,
Sam joined an early-stage bioinformatics and data analytics startup with a successful
exit to Thomson Reuters. Since then, Sam has served as an engineering and architecture
leader for teams across the US, Canada, UK, Spain, India, Ukraine, and Brazil, delivering
multimillion-dollar growth and transformation initiatives across many industries,
including pharmaceutical research and academic literature analysis.

Sam’s driving passions are solving problems, delivering software and helping people find
their place in the world and hone their true capabilities. Sam loves delivering interesting
and innovative tech solutions, such as in the early days using the Netflix stack, Cassandra
and ElasticSearch, finding ways to creatively migrate technology to AWS, or building
voice-based mobile applications to connect the world’s knowledge. Sam loves running,
hiking and spending time with his family and kids, fitting in video games when time
permits.

Sam currently serves as the architecture and consumer engineering lead of a FinTech
company based in the Bay Area.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

About the Reviewer

Garen Mnatsakanov is a Director of Engineering at a FinTech company in the Bay Area.
He holds two degrees B.S. in Computer Information Systems and Business Administration.
Garen has worked in most areas of technology organization: development, testing, DevOps
infrastructure, product, and design. He still stays hands-on and codes. Garen has experience
building strong product engineering teams and a passion for fighting complexity, classical
monoliths, and distributed monoliths at scale in the cloud.

To Diego and Sam,

I want to thank you for the opportunity to be the technical editor of this book. You guys are
true software architects at heart, talented engineers, leaders, and mentors. The topics, analyses,
case studies, references, and approaches you present in this book are invaluable. This book is
also about building a strong engineering culture, enabling businesses to grow, succeed, and
scale with technology instead of being burdened by it.

To my mom Larisa, my dad Victor, my sister Elina, and my awesome nephew Arsen thank you
for your support, sacrifices, and love. And to my beautiful wife Andrea, who has been patient,
supportive, and encouraging from day one, thank you, and I love you. I am sure you will enjoy
this book as I have.

— Garen, Technical Reviewer

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

vi

O

Acknowledgements

The Author: Diego Pacheco

Thanks, God, Thanks, God, Thanks, God. I appreciate all my blessings, I wrote this book
with love, passion, and lots of hard work. I wish we could share the same passion for
software architecture, design, and complex problems. Deeply root that you can make a big
impact in your organization and grow in your career and as a human being. Thank you for
buying my book, I really appreciate it. I hope my experience and perspectives guide you
in your journey. No matter if you are a software architect, software engineer, engineering
manager, DevOps engineer, QA engineer, frontend engineer, director, VP, or CTO.

I have a deep passion for technology, especially for software architecture. My passion could
only happen due to the immense support of my loved family, my wife Andressa, and my
dear daughter Clara. My dear friends Margarida, Adao, Israel and Tais, Jun, Adrian, Ty,
and many other friends are not named here, but be sure you have a place in my heart...
Brazil!

A small disclaimer: This book does not reflect the ideas, decisions, or opinions of any of my past
or future employers or customers in my last 20+ years of experience with distributed systems and
systems at scale, working for companies, and doing consultancy.

Co-author: Sam Sgro

The ideas in this book were formed from over a decade of practical experience doing
software architecture at scale with different teams, companies, and technologies. From the
earliest days of a collaboration session in London’s Green Park, Diego and I have grown
the seed for many of the ideas of this book; we are delighted to share them with you. May
they guide you towards doing work you are passionate and thrilled to do.

To my friends and family across Canada, the US, Spain, the UK, and Brazil, and especially
my beloved wife Claudia and children Kat and Erica, thank you for your patience and for
giving me the space to do all the work needed to see these ideas hit print.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

vii

Preface

Why did we write this book?

Software architecture is an amazing discipline, with many styles and forms coming in and out
of fashion over time. Some tend towards centralization, like Blackboard and Monolith; others
focus on distribution, like Event-Driven, Service Oriented Architecture (SOA, which is dear
and warm to our heart), Microservices, Peer-2-Peer, REST, or Remote Procedure Call (RPC).
Some styles are good for decisioning systems, like Rule-Based; others are great for concurrency
and parallelism, like Share-Nothing and Actor, or focus on layering, like Client-Server, N Tier,
or Component-Based. Some styles are good for data and long-running background tasks like
SEDA and Streaming.

Architecture is cool, exciting, motivating, and warms our hearts, but there are traps too: bad
practices, dark anti-patterns, and monoliths that live in the heart of that darkness.

How often did you hear complaints from the business or another engineer that a system is
terrible, hard to maintain, and holding us back? How often have you heard from the business
that the tech organization is slow and doesn't deliver? How often have you heard from
engineers that they are drowning in technical debt and not as productive as they could be?

The answer is architecture; bad architecture created these problems, and good architecture will
fix them. It's possible to have better systems, systems that can be maintained, sane, scalable,
following proper design and architecture principles, and deliver what the business wants and
what the engineers want. You can have your cake and eat it too. The work is not impossible, but
we will not lie: this is difficult, complex, a never-ending battle that requires Homeric amounts
of discipline and attention to detail. You can’t do such a task without care and passion: for
yourself, your coworkers, your company, and the work that you do.

We wrote this book to share our passion and perspective about the common problems all
companies face across all industries. Problems include technical debt, lack of correct principles,
distributed monoliths, internal shared libraries, code and data migrations, and other essential
concerns. Such problems are not new; they have been around for a long time and will likely be
around as long as humans or Als are writing software.

Our book will not give you easy answers or a magic formula for success; we are here to make
you think, perform tradeoff analysis, and make the best-informed decision possible. If you
want a magic wand to fix your problems, this book is not for you.

We will be very visual in this book, so expect a lot of diagrams to help convey our points. Our
book is Java-centric but not code-heavy. You will see some pseudocode examples but do not
expect complete applications built end to end. This is not a tutorial book.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

viii

Our goal with this book is to make sure you can fully understand the problems around

monoliths and how you can approach them correctly and effectively. We will help you stop the

bleeding, make sense of your reality, and have a path forward to better days and better systems

using solid architectural principles and a bit of creativity.

We will be very technical in this book and will connect many different subjects, but don't worry.

We will explain things in depth and with lots of practical scenarios and examples. The topics

we will cover are wide-ranging, and sometimes we will review the same points from different

angles to uncover different perspectives. We hope you like it, and thank you in advance for

your readership.

While reading this book, you can expect:

Examples: Practical examples from our experience in technology.

Tradeoff Analyses: Architecture is all about tradeoffs, so expect many comparisons of
pros and cons.

Figures: Many diagrams and pictures to illustrate scenarios, tradeoffs, and options.

Multiple Options: We will provide multiple options and the best analysis to make you
consider the entire problem space.

Repetition: We will repeat some principles over and over, analyzing them in different
contexts to find new understanding.

Summary and Learning: Every chapter will have a summary of things to remember
from each chapter. This is a long book, and you might need to read it multiple times;
make notes in whatever way works for you, and look back on what you find interesting
or disagree with. (The authors like productive disagreements!) Remember that when
you just passively read (input) you don’t learn as much as when you produce (output).
You can write a blog post, run a lightning talk or presentation to your engineers or
company, or talk to a friend. It is important to produce output, and we believe that’s
the best way to learn anything, not only this book.

However, this book will not have:

Easy Answers: There is no magic formula to fix your monoliths, just options we will
help you navigate and digest to find your own answers. No quick fixes to your complex
problems, just reality.

Tutorials: You won't find step-by-step instructions on how to build applications. This
is not a tutorial book.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

ix

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/x39a8ep

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Principles-of-Software-Architecture-Modernization.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.
com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the
accuracy of our content to provide with an indulging reading experience to our subscribers.
Our readers are our mirrors, and we use their inputs to reflect and improve upon human
errors, if any, that may have occurred during the publishing processes involved. To let us
maintain the quality and help us reach out to any readers who might be having difficulties due
to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.bpbonline.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at:

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on BPB
books and eBooks.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world,
New Release and Sessions with the Authors:

https://discord.bpbonline.com

i

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

xi

Table of Contents

1. What's Wrong with Monoliths? ... 1
SEUCKUTE ..ottt 2
What are MONOIhS?cccuiiiieirccce e eaeaes 3

Big COABDASE ...t 4
Few deployment UNIEScccoovviviiiiiiiiiiiiciccciicc e 4
Other MONOLith SMELIS...........ccoovoviieieiiiiiiciiec e 5
Centralizedccovvveiiiiiiiiiiiiiiciiccc 5
Ol 6
Sidebar: Does Size MALLET?ccccovviiiiriiiiiiieiiieieesiee et 7
Issues With MONOLINS.ccviiiiiiriiccc s 8
Patterns in software engineering...........cccovuviriiiiiiiiiiiiiiiiiicces 10
What is an anti-patterni? ... 11
Living with Monoliths: Anti-patterns, side effects, and amplifiers...................... 11
Monolith Anti-patternis.........cccveviiiiiiiiciciiiiiiiiiceccc s 11
High COUPIING ..o 12

WIong abstractionscceeuecciiiiiiieiiiiiiicicc s 13

Lack of 1S0IAtIONcocvevviiiiiiiiiiiicicicccc 14
Monolith Side effectS.........ccvueuiiiieiiieieiiiiiciciciciiiccccc 14
Difficult deploymentsccoveeeciiiiiiieieicciiiisiecctc 14
Insufficient teSting........ccccvvvviiiviiiriiiiiiiiicecc 16

Lack of 0OWNETSHIPcocveveieiiiiiiiiiciciicce s 16

Slow adoption of new technologies..............ccovvvvevviiiiicininiiiiiciceccc 17

Slow development CYCIe...........cccvivvviiiviiiiiiiiiiiciicicecc s 19
Sidebar: Automation and anti-patternsvvveiveeiiniiciniiiicccccs 20
AMPLIFICTS oot 22
Broken windows/Copy ANd PASEe............ccccvriiieeieiieeieiieseiteeeeee 22
MiCTOSETVICE @MUY ..vveieiiiieicicceee s 24

Lack of Talent Density...........cccoueeieiumumuiieieieieieieieieieieieieeeiee e 24

Fear 0f Change............ccccvviiiiiiiciciiiiiciiicccccccc 25

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

xii

Are all MONOLIths DAd? ..ot 26
Monoliths are a form of software architeCtureccoevvveviieieecicviiiisecccn, 27
MONOLith DENELILSovuveiiiieciciiicci s 28
Refactoring and change impactccccccvvvvecciiiiininiciciiiicieeeeccce e 28
Simplify SOMe MIGTALIONSvvvevvviiiiiecceiee e 28

A §00d SEATHNG POINE ..o 28
Simplified iNfraStIUCTUTE.ccovvviiiiiiiicccec s 29
Types of MONOLIhS.cciuiiiiiiiiic s 29
Classical, distributed, and modular MONOLIIAS «......ocvvvvveeieeeeiiieeciieeeeeeeeeeeeen, 29
Modular monoliths: The good kind of MONOIitN.............cccvvvvviinciniiiiiiiiiiiiine 31
Modular monoliths: ISHOccccovvveviieieiiiiiiiicieccccic s 32
Modular monoliths: Mobile SUPETAPPSccccvvvviviiiiiiiiiiiiiciceccicicec 34
Can bad monoliths be avoided? ..o 35
Things t0 TEMEMIDETc.iueuiiiiieiiiciiieieeetie e 38
2. Anti-Patterns: Lack of ISOlation........uuiercrcceviinicictieiiiiicnccensscessnsesesessanes 41
SEIUCEUTE ..o 41
What 1S 1SO1AtIONTceeeeeeiiicicicicieieiete ettt 43
IS01AtiON 111 SOFFWATE. ...t 44
Isolation temptations..........cccciueuiiiiiiiiciiii e 45
EXPOSUTC....ovviiiiiiiiiictet e 45
Existing components, BEFcccccooiviiiniiiiiiiiiiiiiiiicccccc 48
Existing components, change existing endpoint...............cccceevvvvvciviieinnennne. 48
Existing service, add 1new endpoint...........cccccuevvvevviiieeciiiiiiieecciscieeen, 48

New service, share the AAtADASE.cccvveveiiieeiiiiieiiieeeeiieeeeeeeeeeeeeeeeeieeesns 49
Sidebar: What is a Backend for Frontend?ccccoovvvvvvncscniinininnn, 50

New service, SHATe the AATAococuveeeeeiieiiiieeeiieeeeeeeeeeeeeeee e 50

What is vent SOUFCING?ccvvviiiiiiiiciiiiiiicieicccicicie e 50

Event SOUrCing in SOfFIIATE.c.cucuvveveveicieieiiiciciiciicciccicee e 51
Sidebar: CQRS and its relationship with ES ..., 52

INew service, SHATE VId APL..........oouvueeeeiiiieeeiieeeieeeeeeeeete e veeeesesaeessns 53
Centralizationcccciveuiiiiiciiiiiiiiiic 53
Benefits of centralizing engineering teams............cccovveueevveviieiencciviieinienennn, 54

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

Issues with 0ver-centralizationceeevevivieieeciciiiiieeecccee e, 55
Delivery bottleneck and innovation bottleneckc.ccccoevvvviiiiiininicnnnnnn, 55
Centralization versus standardization for observability and deployments.......56

Bad shared [iDYATIEScccovevviiiiiiiiiiiiciciciceiccieciss 57
Breaking ISOlationcccceiiiiiiiiniciiiicc s 57
Sharing Aatabases...............cccccovviviiiiiiiiiiiiiiiiiiiiiccc s 57
When is it ok to share databases?c.cccocovvivioiiiciiiiiciciccciciceeeie, 60

Big Data sharing application databasescccccoeevvvieviiecciiiiiienicncnnnn, 60

Hidden contracts and preserving isolationcccevvvecciviiniiiennccnan, 62

Legacy system integrationscocevveevvveierereucieniiisieieciiicieseencsesee e, 62

SHATEd [IDTATIES. ...t 63
Binary CoOUplingcccvvvvviiiiiiiiiiiiiiiiicicicccs 64

Lack of stable COMTACESovurmiviiiiiieiiiiiiiciciciciitccccc s 66
Pushing complexity UPWATS............oovveviviiiieiiiiiiieiiieiceic e, 74
Granularity and distribution: Side effects............ccocovvvvvviiviniiciciiiinn, 74

Let us isolate eVerythingccccccoiiiiiiiiiiicscecececeece e 76
DAtADASES ...t 77
SHATed lIDTATIES......cvvvvivieieieict s 77
SHADIE COMETACES ... 77
Sidebar: Deep modules and A Philosophy of Software Designcccocueueueen. 78
Operating Systems and iNfrastructurecccoevvvvcciniiiinccciiiiccccces 78
Advanced 1SOLALIONc.cuvvvviveiiieieiiieicieicicieictt s 79
Failure isolation and bulkheadingccccoovviiiniiiiiceeeecccc 79
FAIIDACKS ... 82

UX isolation: Degradation and exploration..............cccoecvevevenienneinierininnns 83

How to prevent isolation iSSUES...........cccciviiiiiciiiiiiiiiiccccecce 84
Design reviews and t00liNg...........ccovvviiiiiiiiiiiiiiiiiiiiccccsci e 85
Things t0 TEMEMDETc.cuiuiiiiiiiicici e 86
3. Anti-Patterns: Distributed Monoliths ... 89
SEUCKUTE .ottt 90
What is a distributed monolith?c.coccceeniicnnnicnnccceceeeceeeene 91
Traits of distributed MONOLINScocooviieiiiiiiiiiiiciee 92

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

xiv

How are distributed monoliths created?...........ccovecueuvicueninccnnccenceeeeeens 92
Sharing databases ACT0SS SETVICEScuecivieuiiiiciiiiiiiiiicicieiiectee e 94
Shared persistence [IDYATIES............cccvvvvvvveiiiiiiiiiiciciicicceccc 95
SHATEA COMETACES ... s 96

Issues with distributed MONOLthScccoceiviiiiiiiiiccccce e 97
Binary COUPLING.........ccvviuiiiiiiiiiiiiiiiiciciccc 97
Temporal COUPIINGcovvvvuiiiiiiiiiiiiiiicicic s 98

Push the complexity UPTATASccovovvviieiiieiiiiiiiiieecc 99
Embrace async with an Event-Driven Architecture.............cccococcvuvvvnvnnnne. 100
Vulnerabilities and SeCUTTEY fIXES.........cccvvvviiiiiiiiiiiiiciciciciccccee e 102
TOSHITLG cvvvvveeitetietc ettt e 102
Management ProbIems..............ccvvivvvieinciiiiiiiiiiciccic 103
Reasoning problemsccccvvvvucucuiucuciiieicicsieicieicic it 104

AMPLIOTS ..o 105

TCAII @TOSION ..ottt 105
SOftware OWNETSHIPcovcvvvuiiiciiiiicicicicc e 107
Anti-5cience MeNtAlitYcccovvveviiiiniiieiiiieieeie e, 108
Features and DUZScccvvvvviiiiiiiiiiiciiiiiiccccc 109
Sidebar: LANAMINESccccovviiiiiiiiiiiiiiicieicieicisiceitsc 112
Bad environmentsccccivivciiiiiiiiiiiciciiie e 113

Types of distributed MONOLIthScccovieiiiniiciiiccecccc e 114
BACKENA ... 114
BFEF and frontend.ccccoovvivieiciciiiiiiiiciciciiciccciccc s 114
SEIVLIIESS. ...ttt 116

Complexity in serverless architeCtures...........c.oovvvvvvveieieiecciciiiieicicccesinen, 118

Backfire: worse again!...........ccccooiiiiiiiiiiii 119
Architects as gatekeepers do 1ot scale.............ccccovvvviviiciiiiiiiiiiiiiiii, 119
New Capability[fEeatiureccvnieueurinieieisirieeseteee et 120
NEW HADIe.........coooiiiiiiiiiiiiic 121
EOL teChNOlOgY......c.covovvuiiiiiiiiiiiiciciiiiicicicicccctci s 121

Stop the Bleeding..........coccuiuiiiiciiiiiciiccc e 122
Consider going back to the MONOLith..............ccccvvviveiiiiiiiiiiiiiiiccc 122

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

Team and process AAVICEcevveveieievereiicieieietece s 123
Technology and software architecture Adviceccccovvvevvvvcviiiiieineiccnn, 123

Things t0 reMEMDETccccuiiiiiiiiiiicicece e 124
4. Anti-Patterns: Internal Shared Libraries...........cinciniiciinciniciinnceiccnincnene 127
SEIUCHUTE ..o 127
What i @ HDIAry?c.cueviiiieiiiciiicccceecee e 129
Types of IDIATIes ... 130
Sidebar: Libraries versus frameworksccocovovvveviieeiiiiiviiniecciisieeeccs 131
Issues With HDIariescccocuiiiiiiiiiciicc s 132
Constant MIrALIONScovvveviveveriiiiieieieieict e 132
Lack of stable CONETACESovmemeviieieieieieieieicictcic e 132
Binary coupling | breaking iSOIAtIONcccvvveeueeniiicreiniiesieicceieteeeen, 133
Incentives for library Creation...............ccceeeieieieieiiiiiisiiiiiccicceeeees e 134
The Framework Anti-Patterttccccovvvvvviiinciiiiiiiiiniiciicicisecccsssecs 135

In defense of libraries ..o 137
Performmanceccevvveiiioiiiiiiiicccccce s 137
Reliability PAtH ..ot 137
Language idioMaAtIC.........ccccvvvvviiiiiiiiiiiiciciiiciicccc 138
Code centralizationcoceeueueieieieinieisiciciiicietci 138
Avoid reinventing the WHEelcccoovevviiiiiiiiiiieeeee 138
Pitfalls: Bad practices to avoidcccoouiuiiiiiiiiiiiiiiiicce 139
Internal Shared lIDTATIEScccvvuiuiuiuiiiiiicieicieiciceiccscce 139
Short blanket effectcccvvviviiieiiiiiiiiiiicicc 139

Big frametorks.ccccviiiiiiiiiiiiiiiiciccc 140
Bloated [IDTATIES...........ccccvvuiueiiiiiiieieiciciciecieice et 141
Highly popular liDYaries.............ccoveiueueueieieieieieiciciiiciciie e 141
Libraries shipping CONfiQUIALIONSccccvviviiiiiniciiiiiiiiiciicicicici e 141
Team erosion in Shared [IDTATIESccvueuvveuiveiiiniiiciciciciiiciicccs 142
SEIVICE AITUBTS ...t 143

LIS ..ttt 145
WIAPPETS .o 146
EXTONSION ...t 146

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

xvi

NEW ADSHACHIONS ..o, 147
Lack Of QOVEINANICEoovoveieiiiiiiiiicicicictccec e 148
Better OptioNS........ccooviiiiiiii s 149
When should we create a libTary?ccocovvvvveeeinsciciiiciisccsccccins 149
When should we NOT create a library?ccveveeeieereieiiiiniiiciicic 150
LeVETAZE SCTVICES ...ttt 150
NO Binary COUPING.......ovvuvurmiuiiiieieieieicicicicieietst s 151
Much improved flexibilitycccoovviiiimiiiiiieiiieieee 151
Easier migrations or no migrations at all...............cccoevvvviiinivnncccnnninnn, 151
Critical reliability Path ..o, 152

In some cases, performance..............coovvvvviviiiiinsiiiiiiiiisccciceee i, 152
SIACCAT PALLEIN ... 154
MOdertt SIAECATS ..ot 155
SIAeCArs ANA PIOXIESccvoveveueeiiiiiiieieicicitcie e 157
Sidecars and KUbDernetes..............ccvvvveveieieeeieiiieiiiiiiiiiiicccceeeee e, 158
How can you build a Sidecar? Types of SIAecarscccvvveneieiiieinnnnns 161
Sidebar: Service MESHESccvvvvviviieiiiiiiiicieccic s 162
Simple AlternaAtives.cccovvvvivieiciiiiiiiiccccccs s 163
Leverage existing SDKs and [iDrariesccccocovevevieienieieiciiiiiieiecnnnn, 164

D0 it YOUTSELf...ovvviiiiiiiiiiiccc s 164
Copy and paste the Code................cccovciiniiiiniiiiiiiiiicicc s 164
Contribute t0 OPer SOUTCE........cuvueveveieieieiiiicieieieiccse e 165
Proper library design..........cccceeiiiiiiiiiiiiiiiiicccc s 165
DUplication S 1€-USEcccvvuvurueueuiiiiiiiiiiciciiisisiseicics e s 165
Bad duplication: BUSINESS COEcvrurmiieiiiiiciiiiiiiiciciciciciceeiee e, 165
Bad duplication: COMPANCe..............ccoevvivieveieieiiiiiiiiciecccscce e 165
Good duplication: Migrationscccvovvivinvciiiiiiiiniiiiiiiicieecccis 166
Good duplication: Configuration and setup code............ccocovvvvuvvurrcrrnnnnn, 166
Reuse: The double edged SWOTd ..o 167
Proper dependency management...............ccocecviiviniiiniiiiiiiiiieciieec, 168
Cherry pick dependenciesccccveeeceneisiiiiiiiiiiiiicccceee e, 168
Avoid company-wide parent POMS...........cccoovvviiviniiiincciiiiiicieec, 171

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

Explicitly declare dependenciesccovveuvuvueueiesininisiiiniiiiiiiciiiccsiccan 172

Lean [IDYATIES..........ccouvueuiiiiiiiiiiiiiciiiic e 172
The Spectrum Of OPHIONSc.cuviueuiiiicieiiieieicce e 173
Things t0 TEMEMDETc.cuiuiiiiciiciicic s 174
5. ASSESSIMENES....ucucierteteteeettntetee ettt e e s a s e nnns 177
SEUCKUTE ..t 178
What iS an aSSESSIMENT?c.c.oviueriiiiecreiiiieieirececierecee ettt 179
Why perform asseSSMENts? ..o seeseseeseseeens 180
Typical modernization Projectsccuvceceiiiiiiiiniiiiiiiiiseeccss s 180
Successful modernization Projectsccveinsesiieiiieiiiiiicccceeeenas 181
MOIDALIONS ..ot 181
ASSESSTNCILES ...vviiivieicet et 182

Mind the Cone of UNCertaintycccveuveeivienieisinininiciiiiciiccccciccenas 183
Technology and buSINESS NEEASc.cccvevevevcveiiiiiiiciieieee e, 184
Modernization StrAteQYccccovvviviiciiiiiiiiiiciiiiiiiiciccccc e 185
Decisions and trad@offs............ccooeuiuiiiiiiiiiiiiiiiiccccc e 186
BUild DErSUS DUY ..o 186
The €ase 0 DUY ...cvvevviciiiiiiiciiicccicic s 186

The case t0 DUILoocurviuimiiiiiiiiciiicicicicicicc 187
Rewrite Versus 1efactor ...t 189
The power of backward compatibility........c.ccoeceueiniieiiniieiiniicecceeenn, 192
Elements of proper assessments ... 194
Code analysis at SCALE..............ooueviveieieieieieieieieieec 194
Classification and judgment..............cccccovvvveviiiiiiiciiiiiiiiccccc 196
OWNETSHIP ..ot s 197

Rate of business CHANGEccveveveviieiiiiiiiceeee e 198

PUblic CONETACEScuvveviviiiiiiiicieieieicicctce e 199
Downstream dependenciesccoccvvcrrucuiieieiciesisieiesisiiieiisisiscsnan 200
Upstream dependeriCiescovvvvuvireuciiiiiiiiiniciiiiiisieeiccssse s 200

USEY fACING? .ottt 201
COMPLEXTEY oot 201

Pass rate | teSt COVETAGE.c.cuiuvuriueiriieirieietieiete ettt 203

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

X0l

Database analysis.............ccovcvvveveieueiiiiiiieieieiciieis e 203
Classifying the level of independence...............c.cooovvvvnvciciiiiiencciiniinnn, 203
Classical MONOLIEHccccovviviciiiiiiiiiicicciicicc s 204
Microservices 01 Proper SETVICES.......cvviveviueiereriiiiiieseiesccisiieie e 204
Distributed mMONOlith...........cccvvviviiiiiiiiiiiiicccccc 205
Different persistence framewworkscccovvvvciiiiniiiinciiiiiiiiceccciies 205
Isolated SCHEMASc.cccovvviivieiciiiiiiicieccc 205
I50lated taDIEScccvviviiiiiiiiiiiiciccc 205

Domain Mapping ..ottt 206
List all the dOMAINScccccoiviviiiiiiiiiiiiiieccctc 208
Quarantine the SYSEENLcccccveveviieiciiiiiiiieeee e 208

Assessment OULCOMES. ..o s 210

QUICK TUITS .ottt ettt 210

Prioritization, expectations, and Strategy...........ccccoevvvevvieivioiiiiiniiiieiieieei, 210

Business Impact versus effortcccovvveciiininiiiiiiiiiiiccs 211

OFAer Of EUCHES ... 213

RAdical CHANGEc.cvvviiiiiiiiiiccc 214

Things t0 reMEMDET........c.covriiuiiiiiiciciiicece e 214
6. Principles of Proper Services..... i 217
SEIUCHUTE ... 217
Service oriented architeCturecceuviieieiniicieiniiciecce e 218

TYPES Of SETVICES ...ttt 219

WHEN 10 USE 0 SETVICE ... 220

When t0 AUO0IA SETVICESccccvvveueuiiiiiiiiiciciciiicice s 221

SOADEHESIES ..ot 221
Faster time t0 Market............ccoccvvviviiiiiiiiiiiiiiccc e, 222
Lower costs and easier MAiNteNATCe.ccccovvvvivieucciiiiiiiiciiicicieecca, 225
Extensibility and adaptabilityccccvvvviniciniiiiiciicccccccen, 227
INAependenCe ..o, 228
Summary of SOA DENefits........ccccovvvivviiiniiiiiiiiiiiiiiiiccccccce e 229

CONETACE fITS .. 232

NEW SETVICE .t 232

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

EXISHING COMPONEIE ..o 233
Coding contracts with OpenAPIc.ccccovvvviiiiiiiiiiiiiiiiceecc 234
Backward compatibility...........cccccovviviiiiiiiiiiiiiiiiciici 236
SOA and iS0Iationccccciviviiiiiiiiiiiic e 240
Isolate AatAStOTesccccovviiiiiiiiiiiiiiiiiiciicc e 242
IS0LAte IDTATIES ... 243
Sidebar: flavors versus bridges in libraries and monoliths..................cc.c....... 246
Isolated public CONPIACES..........covvvvviieieiiiiiicicic e 249
DeSIQI TEUICTIS ...ttt 253
Automating contract Ralthcccvvvvvvvicniiiiiiiiiiiiiicccccces 254

NOT ODVIOUS EHINGS ..o 255
Handling errors in CONtracts..........oovvvnviiiiniiiiiiiiiiiiiceccccscceeca 257

SETVICE EXPOSUTE ..ottt s 258

Things t0 reMeMDET.........cccccuiiiiiiiiiiiccc e 260
7. Proper Service TeStiNguieevinininieeinintnteteeeessssesee s ssssssesssessssssens 265
SEUCEUTE ..o 266
WRY tESHING? ..t 267
COTTOCENESS .ttt 268
CRANGE TMPACE ..ot 268
Production 1eadyccceuvviiiiiiiniiiiiiiiiiiccc 268
Traits of SOftware tests.........cooviiiiriiiii 269
TYPES Of TOSES..c..evvvviiicieieiciiit s 269
Traits of bad tests.........ccccciiiiiiiiiiii 270
Inconsistent failure YAteccovecviiiiiiiiiiiiiicicc 271
Refactoring fragilitly ..ot 272
Data dependency entanglementscoooovvveiiiiiiiicicieeeeee e, 272
Inefficient teSting CYCIESccovvuviiiiiiiiiiiiiiiiciceccc 272
Constant test tWeaKINGccovvveviiieieieiiiiiiicieiccs e 273
Test INACPETLACHICE.cocueeeuiiiiicieiciciiciceec e 274
Traits of GO0 tEStSccvviiiiiiiiiiiciccc e 274
CONSEANE SUCCESS TALEevvvevviiciceciieietec e 275
Refactoring reSilieriCl..........coouviiiueuiiiieieieieieeieee e 275

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

Data dependency iSOIAtionccccvvevvioiviiiiciiiiiiiciciceeess 277

Direct iMPULS ..ot 277
INEEYNAL SEALE ..o 277
Fast feedback CYCIEScovvvvviviiiiiiiiiiiciccccccccc 278
Hands-0ff testScvvviiiiiiiiiciiiiiiciciccccc 278
Self-CONtATNE ..o 278
Testing Manifesto ... 282
Testing throughout over at the endc.ccccovvvviiiiiiniiciiiiiicieccccc 282
Preventing bugs over finding DUZScccccvuvvciiiiiiiiiiiiiiiicicccccccecc, 282
Testing understanding over checking functionalityccccvvvvnvcinieinnnnns 283
Building the best system over breaking the System..............cocccevvvvvvvivincccinnnnnn. 283
Team responsibility for quality over tester responsibilitycccccevvveuenees 283
Testing diVeTSityccociiiviriiiiiiiiiccc e 283
Why testing matters to software architeCture.............ccocovvvvvevnccceniiinnccciiinn, 284
Best practices teSting SErVICEScvvuuiieiiiiieiiiiiciiiiiiciciisciecseeic e 284
Practical Stress teStNGcevvveeviviiieieiciciiiicie e 285
Gatling for performance teStingccoevvvvvveeeciiiiiiiniiiisieeecccseies 286
Test PYFAMIAcccoveuiiiiiiiciciciiiiiciciccc s 288
Strategies for testing il Productioncccceveveeveciiiesesiesiiiciiiciscscanes 289
EdQe TOULET ... 291
BOEA USEYS ot 291
Live auditing | compare and discard resultscccccvccvicinicinicinicincinn 292
Replaying traffiC ...t 294
CRAOS TESHING .. 295
Netflix STMIAN ATTHY ..ot 298
TOXTIPTOXY cvvvvveviieriieieicie et 299
ReSTlIency MATIX....ccccvvviveiiiiiiiiiiieiciciicce e 300
Internal state - advanced deep dive.............cccvvvvieicieiiiiiiiiiiiicccccc, 300
Synthetic data generation.............ccooeeeueieieieieieiiieiiiiieiie e, 301
Testing iNEEIfACES..........ccvucuiiiiiiiiiiiiiiiicicie e 302
Test AAta SCEUPcuvvveiiicicieieiciciccct s 303
Mocking interfacescocvvvvvvieieiciiiiiiiieecciice e 304

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

Things t0 TEMEMDETc.ouiuiiiiciiciiciicc s 305
8. Embracing New Technology........ccoceuvnuiininriinriininniinniininsiissiisnssinsiesnsscsssessssssens 309
SEUCKUTE .ot 310
Embrace the new, with principles ..o 311
On demand resources - cloud compuUtingcceeveveieiiiiiniiiiii 311
SEADIE COMETACES ..ot 314
Proper iS0lAtioncccoovvveveiciiiiiiieicicctcc e 314
ONe ACCOUNE PET SCTVICEvveiiiieieiciiicieieieict s s 316
One account per business domain...............ccccvvvveiiiiieiciiiiiiiiecciieesecs 318
One account for €VETYININGcovovvueuruiiiiiiciiieicieeeceieic s 319
Account organization impacts contract granularityccccoeeeieviieiniiinnnns 320
Internal shared lIDTAYIEScovvuevimemeieieieieieieiicicice e 320
SCTVRTIESS. ...ttt 321
How the cloud impacts team 0rgamization...............ccceeeeevvevvueeenneieeeiesererenna, 322
Pre-built capabilities - cloud services and SaaS...........ccccooeviviiiniiiiiininnnne. 323
Relational and NOSQL AatASIOTESc..cuiereeieiseieieiseeet et 323

AL and Analyticscouvviiiiiiiiiiiccccc e 324
Isolated deployment UNits..........ccccccvviiiiiiiiiiiiiiniiiie 325
Containers and KUDEINEtes..............ccccvveieieiiieiiiiiiiiiiccicicccece e 325
ClLOUA SPECEIUTN ..o 330
Real time access to data - streaming...........cccccececiviviiiiiiiiiiiii 333
APACHE KAFKA ..o 333
Kafka architeCture.............ccccvvuviiiiiiiiiiiciciiiice 335
Kafka and CQRS [ESccvviueiiiiiieieisiieieiettesettee et 337
KSGIDB.......ooviiiiiieieicicictctctt 338
Efficient engineers............ccooviiiiiiiiiiiinicicccccc 339
Modern IangUAZES............c.ccvvvviiiiiiiiiiiiiiicicicicicii e 340
Language SPECtTUIMcveevveveiiieiiietiicietcte e 341
JVM IANGUAZES.......ooceviiiiiiciiicicec e 343
Flexible data models..........ccoooiiiiiiiiiiiii 344
NOSQL AAEADASES ...ttt 344
Going beyond the relational MOdel.................c.ccooovvvvviieiiiiiiiiiinciicieeec 347

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

xxii

Lean communications - binary APIs and GraphQL...........ccccccceieiniiniininncnnn. 349
Service-to-Service communication: REST, gRPC, and GraphQL......................... 349
What REST 0t iGNtcucuiiiiiiiiiiiiiiiiiciccccc s 350
Interoperability VS PErformManCeccocvvevvevinieisiiiciiiciiiicceee e, 351
GIAPRQL ..o 352
GRPC oo 354

Things t0 FEMEMDETc.couiuiiiiiciiiciicicc e 356

9. Code MiIGIatiOnsccuceeuiririniinnirininniinsisissisinssiisesiissesissssissssissssssssssssssssssssssssssssssases 361

SEUCHUTE ..o 361

Why do code migrations matter?cccocurieuricuricunicinicieicieeceeceeeceeecaeeaas 362
Inventory, use cases, ANd POCS...........cccvvvvviiiiiiiiiniciiiiiicisecccsee e, 364

Red vs green Migrationsccccviuiiiiiiiiiiiiiiciciicccc s 366

Elements of proper code, migrations............cccoveviirrniiiininniccccces 367
MiQration EATQEt.........c.cvvveviiiiiiiieiiiciecec s 367
DIffiCUIEY oot 370
Customer impact - online vs offlineccccocovvvvvvieevciiiiiiiiceeece 374
Execution - service team vs. platform teamoooeeeeeeieicieiciciciniciiiicnne, 377

Code migration patternscocceeiiiiiiiiiiiiii 378
Backward compatibility............cccccovviniciiiiiiiiiiciicieccese s 379
Lazy MIQTaAtiONScovevivveiiiiiiiiciitiicietie e 379
SANGLEE Fig ...ocvcviiiiiiiiiiciiiiiicicicc s 382

Converting a classical monolith to proper SOA.........ccccovvvvvvvviineeiiiiinnn. 383
Converting a classical monolith to a modular monolith ... 386
Converting a distributed monolith to proper SOA..........cccccccvvvvvvvvcvinnninnn. 387
Amazon two - WAY AOOTS.........ccovvveviiiiiicicicieieieiee e, 390

Migration 10adblOCKSccceiiiiiiiiiiiiiiccc 391

Roadblock - [eftOversccciiiiiiiiiiiiiiiiiiiiciccciic 391
Double down on inventories and POCS..........c.cccccoeivieiniocvcciciinccicisein, 391
Distributed migrations and team dependencies..............ccccvvvvvvvveccvnnnnn. 392
Repetition, repetition, 1ePetitioncccvveiviiciiiiiiiiniiiciiicicccc, 392

Roadblock - friction and entropy...........cceeeeeveieiiiniiiiiiiiciccccceeeeee, 392

Roadblock - high WIP limits, business pressure, compliance, and other traps......393

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

POSt-MiIgrationcooeieiiiiiiiec s 393
RolIDACk SEHALEGIES.......ovevviiciciiicicietc 394
Things t0 reMEMDETccccuiiiiiiiiiiicicece e 394
10. Data Migrationseeeeeenieieeeiininieteneeensssssseeessssssssssesessssssssssssessssssssssssssessssssens 397
SEIUCHUTE ..o 398
Data migration Tiskscccccciiiiiiiiiiiiiiiiiices 399
Pre-data migrationscccoeeieiiiiiiiiiiiiicccc s 399
Inventory and analysis.............ccoooveieueiiieieieiiieiiecc 399
Planning and identifying quick Winscccccevvvviviiinciiiiiiiicicce 403
Data migration patterns ... 405
Revisiting - 1azy Migrations............ceeeueueueieieieieiiiiiiiciciciiceee e 405
Export and imMport ...t 406
Database 1epliCation.............ccvueueveueiiieinieiiiciciiicictiis 408
TADLE AUff o 410
THIGQET'S vt 411
Change Data CAPHUTEcouvueucveieiiicieiiicieicicicietstt e 412
DUALTFTEING oottt 413
COId AALA..ooeviiee 414

Failure in one write 0perationccccvcivciiiiciiiiciiiciicciccccc 414
Transaction delay and complexitycccovvvvieeiciiiiiiiecciicieeecc 415

Data migration strategies...........cccovviviiiiiiiiiiii e 415
ONline VS OffliNe.......cvvvvieiiiiciiiciecc s 416
Schema first versus multiple MiGrationscccceeveveveveiiieiiiciiiiccccee 416
Revising: Strangler Fig........cooiiiiiiiiiiiiiiiiiiiiiiciciceccsscec e 417
Classical monoliths, Strangler Fig, and data migrations................ccccceveveunes 418
Executing migrations.........ccoeiieiiiiiiiiicicccc s 420
TESHITIG oottt 420
Pre-migration sanity testing..........c.coceevvvviiiiiniecciiiiiiieec 421
Performance testingccvviviviiiniiiciiiiiciicccs 422
Practical database performance testing with NDBenchcccccccovevvvvieinncnne. 423
Sanity test: Post-migration structure and data..............ccccocecvvvvvvcvvvcvncnnninnnnn, 424
ODBSETVADILIEY ... 425

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

xXxXiv

Post-data migrations.coeeeiiiiiiniiiicc e 428
Ghost BUTEITLG ..o 428

Clean up and decOMMISSIONINGcoovvvvivueueuciiiiiiiiiiiiciiiieiesecc s 430

Things t0 FEMEMDETc.ccuiuiiiiiciiiciicicc e 430

T1. EPIlOZUE.iiitcttcttcncsncicsssssssessesssssssssssssssssssssssassssasssssasessasans 435
SEUCHUTE ..o 435
ENCOTE! ... 436
Principles matter the MOSt.........ccovcuiucuriciniciicic e 437
EdUCAtION ..o 438
City PlANIING ...cocviviiii s 439
VISIOT c.viiiiiiii e 441
ONWaATd....oiiiiiiii 442
INAEXcucuritiiitiitiiitcictc bbb 443-450

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

CHAPTER 1

What's Wrong with
Monoliths?

Awareness is the great agent for change.
— Eckhart Tolle

Monoliths are the great boogeymen of modern-day software engineering. Developers will
gather around the (virtual) campfire, trading horror stories about that terrible Windows
Desktop app that had a week of downtime because the JVM crashed every 24 hours or the 1990s
banking application that required a team of 40 people to release. We’ve all had a coworker or
friend commiserate while they are stuck in a big Monolith, wishing there was a way out.

Seeking better solutions, people embraced microservices.

Result: An 8-9 figure software development project, 100s of people, half the features scrapped,
and now they have TWO terrible platforms to maintain, not just one. The cure can be worse
than the disease.

Let us be the ones to tell you that there is hope. Real hope. Not one found in pursuing the latest
and greatest software development trends, but real tactics, real progress that can be made to
improve the software architecture and lives of developers, teams, and businesses worldwide.

But it all starts here. Understanding Monoliths is the key to being able to truly address some
of their inherent flaws. After all, not everything is entirely bad or good. By understanding the
problems and benefits of Monolithic architecture, you will avoid common pitfalls and provide
real solutions for business and engineering.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

2 Principles of Software Architecture Modernization

Structure

In this chapter, we will cover the following topics:
e What are monoliths?
o Big codebase
o Few deployment units
o Other monolith smells
* Centralized
= Old
o Sidebar: Does size matter?
e Issues with monoliths
e DPatterns in software engineering
o What is an anti-pattern?
e Living with Monoliths: anti-patterns, side effects, and amplifiers
o Monolith anti-patterns
* High coupling
* Wrong abstractions
* Lack of isolation
o Monolith side effects
* Difficult deployments
* Insufficient testing
» Lack of ownership
= Slow adoption of new technologies
* Slow development cycle
o Sidebar: Automation and anti-patterns
o Amplifiers
= Broken windows/copy and paste
* Microservice envy
» Lack of Talent Density
» Fear of change
e Are all monoliths bad?

o Monoliths are a form of software architecture

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

What's Wrong with Monoliths? 3

* Monolith benefits
Refactoring and change impact
Simplify some migrations

A good starting point

© © O O

Simplified infrastructure

e Types of monoliths
o C(lassical, distributed, and modular monoliths
o Modular monoliths: the good kind of monolith
o Modular monoliths: Istio
0o Modular monoliths: mobile SuperApps

e Can bad monoliths be avoided?

e Things to remember

What are monoliths?

First, we need to understand monoliths deeply to fight them. Otherwise, what are we fighting
against? How do we know when we win? How can you define success? Monoliths are a very
common theme in the software industry. Everybody has their definition of what a monolith
is and many preconceptions. However, we need to start with a common understanding.
Therefore, we need to define what a monolith is. So, what is a monolith? What comes to your
mind when you think of a monolith?

To answer this question, refer to the following Figure 1.1, which consists of monoliths:

ur

Profile | Sales | Reports

Figure 1.1: Monoliths
Source: https://en.wikipedia.org/wiki/List_of_works_similar_to_the_2020_Utah_monolith

What do all these images have in common? Based on the preceding figure, we see big blocks

that are hard to move and not easy to understand. We get the same traits when it comes to
code.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

4 Principles of Software Architecture Modernization

Monoliths are a style of software architecture where a large amount of code is deployed using
a small number of deployment units like exes, JARs, WARs, etc. In short, a big codebase with
a few deployed artifacts. It is the natural state of most application development when it just
gets started, having all the code in the same code repository and deployment unit simplifies
your life in the early days where finding product-market fit trumps premature optimization.

Big codebase

Monoliths typically have a lot of code. It could be in one source code repository or multiple
repos for some types of monoliths which we will discuss later. But, there is ALWAYS a lot of
code involved. Of course, what is big is relative. Big codebases are not a problem per se; it is
more like a smell, but it happens often enough that it is a key characteristic of a monolith.

Sometimes monoliths are big in other ways. Monolithic applications can be quite complex
with tons of features and often need big teams. Actively managing a monolith takes a lot of
resources (and brave hearts!). Monoliths may or may not have many users or need lots of
computing to accomplish their goals, but they have big, complex codebases.

Few deployment units

When we build and release software solutions, we often have a system to do so. We use
code versioning tools like git, for instance. We have issue trackers to track bugs, we capture
requirements and needs in JIRA tickets, and we have ways to organize people to transform
needs into solutions, often via Agile and Lean methods like Scrum, XP, Kanban, and many
others. Teams use these and many other systems to divide their work into small, understandable
chunks.

However, by its nature, a monolith shapes all of those diverse processes because of one simple
fact: monoliths tend to have few deployment units', to the point of being just a single massive
binary. Think about a massive .exe for a Windows desktop application or a JAR or WAR in
Java.?

Having one or a few big artifacts similarly drives a huge process to get that deployment unit
ready and tested. This reality applies regardless of whether the team is shipping a change in a
single line of code or a massive feature; it still triggers the same army of developers and testers
because it’s all in one (or very few) packaged artifacts containing the entire application.

1 Deployment Unit represents how the application is deployed in production, usually in a server. Java for
instance, could be an EAR, WAR or JAR file. For a windows application could be a .EXE file, for a Linux
C++ lib could a .so file.

2 While we say binary here, as software often produces compiled code artifacts, but for some languages,
it can also be a plain text code, interpreted at runtime. We will often refer to binaries in this book as
frequently those artifacts are compressed, or otherwise live the bulk of their deployment lifecycle as a
binary, but keep in mind the realities of diverse languages which our book applies to.

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

What's Wrong with Monoliths? 5

Here, you can see a great example of how software architecture shapes organizations. Structure
and design influence the way in which a thing can be accomplished and who needs to do it. As
an architect, you may think your role is limited to software, code, and how it is structured and
deployed; in truth, your systems shape organizations and lie at the heart of an organization’s
ability to scale. Organizations will take the safe path, and if your architecture means the safe
path to releasing code requires all teams to work night and day to release, debug, and then
patch your monolith in that order... your organization will do that. This is not fun at all.
Architecture is the great enabler or disabler, and a simple thing like “my app is deployed with
15 teams updating a single WAR in production” can lead to dysfunction and misery... misery
only you can fix.?

Other monolith smells

Monoliths are typically big and produce few deployment units, but there are other frequently
found characteristics seen in monoliths. They are not a guarantee of a monolith, but they are so
often found in monoliths that they are closely associated.

If you come across these, chances are you are dealing with a monolith. We call these sorts of
items “smells”. The term code smell* was coined by Kent Beck in the late 90s; a code smell is
something that might lead to a deeper problem. In the context of monoliths, smells are more
tricky, they may indicate a problem or a symptom, not a root cause, and the problem might be
something else.

Centralized

Monoliths favor centralization, with all features, configurations and tests all in one place. A
simple way to think of it is that all our code will be running on one machine, like a desktop
application. All our code is deployed together and just uses one machine to deliver all
capabilities your business needs. All features, capabilities, and GUIs will share the same
resources: CPU, memory, disk, and network.

The opposite of centralization is distribution, where everything is split apart. Imagine a
microservices architecture where your software is running on multiple machines, accessing
resources like databases or configurations that also reside on other devices.

Is centralization inherently bad? If it were, we would have an easy solution: divide the
codebase. Let us introduce microservices and slice and dice our monolith into many pieces.
The monolith would be gone, and our problem would be solved. Using the Microservices
style of architecture (MSA), we move away from centralization and embrace distribution.
We moved the needle from one extreme to another. But did this approach actually fix all

3 Using the tools in this book!
4 The concept of code smells was popularized by the Refactoring book, written by Martin Fowler in 1999.
Kent Beck wrote an essay in Chapter 3 about code smells. https://wiki.c2.com/?CodeSmell

Kup ksigzke

http://helion.pl/page354U~rt/e_43im_ebook

