Fundamentals of IoT

Get familiar with the building blocks of IoT

Rajan Gupta Supriya Madan

ii 📃

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online WeWork 119 Marylebone Road London NW1 5PU UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-644

www.bpbonline.com

Dedicated to

Our Family and Management of (Vivekananda Institute of Professional Studies – Technical Campus) About the Authors

- **Prof. (Dr.) Rajan Gupta** is working as an Associate Professor in school of IT at Vivekananda Institute of Professional Studies (Affiliated to Guru Gobind Singh Indraprastha University, New Delhi) since 2006. He has completed his Doctorate in Computer Science and Applications from Maharshi Dayanand University, Rohtak, Haryana. He has more than 22 years of teaching experience at various graduate and post graduate institutions. He has more than 30 research papers to his credit in various refereed International/National Journals and Conferences and also has two published patents. His interest areas include Financial Fraud Detection, Digital Marketing, Cyber Security, IoT and Machine Learning.
- **Prof. (Dr.) Supriya Madan**, Dean, School of IT at Vivekananda Institute of Professional Studies has versatile experience and is an erudite scholar in her own right. Her association with the field of Information Technology is a testimony of her fruitful and ongoing journey. She started her professional career in 1989 as a senior programmer and EDP manager of a reputed public limited finance company. After gaining practical knowledge and successful completion of projects, her zeal and enthusiasm for teaching brought her into full-time academics in the year 2000. She has published patents and her research work has been published in reputed national and international conferences and International Journals and are quoted as references.

iv 👘

About the Reviewer

Brij Mohan Sharma is a passionate IoT developer with a diverse background in working on various IoT and IIoT projects. He has over 6 years of experience in the field, and his expertise spans a wide range of applications, including indoor local positioning systems, asset management, connected cars, and IoT system benchmarking. He is proficient in working with Azure IoT, AWS, and using core languages such as Java, Python, and Embedded C for edge and cloud-based IoT solutions.

Brij Mohan Sharma has worked for esteemed companies like Boeing, Wipro, and Sopra Steria, where he has gained valuable insights and hands-on experience in tackling real-world challenges through IoT. At Boeing, he contributed to the development of an Asset Monitoring System, including implementing autodeployment and designing secure Over-The-Air (OTA) update mechanisms.

During his tenure at Wipro as a Senior Project Engineer, Brij Mohan Sharma successfully delivered stages of a digital twin monitoring health feature project and developed a custom Azure dashboard for monitoring Azure services. He also collaborated with the team to construct APIs that determined the overall health state of Azure instances.

As a Full Stack IoT Developer at Sopra Steria, Brij Mohan Sharma worked on various projects, including the design of a digital twin for a connected car in collaboration with Blockchain and AI/ML teams. He also engaged in IoT initiatives for asset monitoring and predictive maintenance, as well as benchmarking studies on cloud platforms like Azure, AWS, and ThingWorx.

Currently employed by Intel as a member of NEX (Network and Edge), Brij Mohan Sharma continues to leverage his expertise and passion for IoT to address realworld problems. His experience and technical proficiency allow him to navigate the complexities of IoT development and deliver innovative solutions.

With a strong foundation in IoT technologies, programming languages, and a drive to find practical solutions, Brij Mohan Sharma remains committed to utilizing IoT as a powerful tool for problem-solving and creating positive impact in various industries.

v

vi 📃

Acknowledgement

First and foremost, praises and thanks to the God, the Almighty, for his showers of blessings.

We are overwhelmed, humbled and feel grateful to be able to acknowledge our depth gratitude to the Management of Vivekananda Institute of Professional Studies – Technical Campus for always encouraging and motivating us to achieve greater heights.

Any attempt at any level cannot be complete without the support and guidance of our family and friends.

Our gratitude also goes to the team at BPB Publications for being supportive enough to provide us with a long time to finish the book and allow us to publish the book.

Finally, our thanks go to all the people who have supported us in completing the book directly or indirectly.

vii

Preface

Welcome to the fascinating world of the Internet of Things! This book serves as your comprehensive guide to understanding and harnessing the power of IoT and Arduino to create innovative and intelligent solutions. The Internet of Things has emerged as a game-changing technology that has the potential to transform industries, revolutionize everyday life, and unlock endless possibilities. By connecting physical objects and devices to the internet, IoT enables seamless communication, data exchange, and intelligent decision-making.

Arduino is a versatile open-source platform widely used for building interactive projects and prototyping IoT applications. Its user-friendly interface and robust ecosystem make it an ideal choice for beginners and professionals alike. In this book, we aim to provide a holistic approach to exploring the Internet of Things and Arduino programming. Whether you are a student, educator, hobbyist, or industry professional, this book is designed to equip you with the knowledge and skills necessary to dive into the world of IoT.

We will start with a solid foundation, introducing you to the core concepts of IoT and explaining the significance of this technology in today's interconnected world. We will explore the various components of IoT systems, including sensors, actuators, and communication protocols. Next, we will delve into the world of Arduino programming. You will learn the essentials of programming with Arduino, from understanding the syntax and control structures to utilizing libraries and creating interactive projects. We will guide you through hands-on examples and exercises that reinforce your learning and help you develop confidence in your programming skills.

Throughout the book, we will emphasize on practical application and real-world scenarios. You will have the opportunity to explore case studies and examples that showcase the integration of IoT and Arduino in different domains, such as smart homes, healthcare, agriculture, and industrial automation. Furthermore, we will address the critical aspects of IoT security and privacy, highlighting best practices and strategies to safeguard your IoT deployments from potential threats and vulnerabilities. viii

We hope this book will inspire you to explore the endless possibilities of IoT. Let your imagination soar as you embark on this exciting journey into the world of interconnected devices and intelligent systems.

This book is divided into **08 chapters**. It covers a wide range of topics, including:

Chapter 1: The book starts with a clear explanation of IoT principles, architectures, and applications, highlighting the impact of IoT on various industries and everyday life. Architecture and conceptual framework of IoT will be discussed in this chapter. The details about various technologies and sources of IoT are also discussed.

Chapter 2: It will cover hardware requirements for developing an IoT application. The chapter covers a wide range of sensors commonly used in IoT applications, including temperature, humidity, motion, and light sensors.

Chapter 3: It will cover Embedded systems in IoT, and explain different examples of embedded computing. The chapter will also discuss various IoT supported hardware platforms such as Arduino, Netduino, Raspberry Pi. Beagle Bone, intel Galileo and many more.

Chapter 4: Readers will learn the essentials of Arduino boards, providing a solid foundation for building IoT prototypes and projects. This chapter provides a stepby-step guide to programming Arduino boards using the Arduino IDE, exploring the syntax, Arduino libraries and functions necessary for creating effective IoT applications.

Chapter 5: This chapter explains IoT and M2M design standards, types of M2M communication such as RFID, NFC, WiFi, Cellular, ZigBee and Bluetooth. It will also explain IoT/M2M system layers and design standardization. IoT generates a massive amount of data, often in real-time. To derive meaningful insights and make informed decisions, this data needs to be processed and analyzed. Data consolidation and enrichment is discussed in this chapter.

Chapter 6: IoT devices are connected to the internet, allowing them to transmit and receive data. They can use various communication technologies, including Wi-Fi, Bluetooth, cellular networks, or low-power wide-area networks (LPWANs) like LoRaWAN or NB-IoT. Readers will delve into various communication protocols used in IoT, such as MQTT and HTTP, and learn how to establish connectivity between Arduino boards and IoT platforms. Data aggregation and dissemination is also discussed in this chapter.

ix

Chapter 7: Explains different IoT challenges such as design and development challenges, and security challenges.

Chapter 8: Discusses various applications of IoT such as smart city, smart homes, e-health, smart automotives and smart cards. The use of IoT in mobile devices is explained in this chapter. Data communication between H/W units of IoT is also discussed in this chapter.

This book covers a wide range of sensors commonly used in IoT applications, including temperature, humidity, motion, and light sensors. The appendix at the end of the book explains how to interface these sensors with Arduino boards to collect real-time data.

We are confident that this book will be useful for the teaching faternity and students.

x

Coloured Images

Please follow the link to download the *Coloured Images* of the book:

https://rebrand.ly/h4luw80

We have code bundles from our rich catalogue of books and videos available at **https://github.com/bpbpublications**. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications' Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At **www.bpbonline.com**, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

xi

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at **business@bpbonline.com** with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit **www.bpbonline.com**. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit **www.bpbonline.com**.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

1. Introduction to Internet of Things1
Introduction1
Structure2
Objectives2
Internet of Things
Internet oriented vision5
Things oriented vision
Semantic oriented vision
Conceptual framework6
Architectural view of IoT8
Sensing layer9
Gateways and network layer9
Management service layer9
Application layer10
Technologies behind IoT10
ZigBee
Thread11
Z-wave
Wi-Fi12
RFID
NFC
<i>LTE-Cat M</i> 113
Bluetooth13
NB-IoT14
LoRaWan14
<i>Sigfox</i>
Sources of IoT15
Data from passive source15
Data from active source15

xiii

	Data from dynamic source	15
	Conclusion	15
	Key terms	16
	Questions	16
2. F	Hardware for IoT	17
	Introduction	17
	Structure	17
	Objectives	
	Sensors	
	Types of sensors	19
	Accelerometer sensor	19
	Chemical sensor	20
	Humidity sensor	21
	Level sensor	21
	Motion senor	22
	Optical sensor	22
	Pressure sensor	23
	Proximity sensor	23
	Temperature sensor	24
	Touch sensor	25
	Digital sensors	25
	Digital accelerometers	
	Digital temperature sensor	
	Characteristics of sensors	27
	Static characteristics	27
	Dynamic characteristics	
	Actuators	29
	Types of actuators	
	Hydraulics actuators	
	Pneumatic actuators	
	Electrical actuators	36

xiv

3.

Thermal/magnetic actuators	39
Mechanical actuators	40
Relay actuators	40
Radio frequency identification technology	40
Types of RFID	41
Working principle of RFID	42
Applications of RFID	42
Advantages of RFID	43
Disadvantages of RFID	43
Wireless sensor networks	43
Types of wireless sensor network	44
Classification of wireless sensor networks	46
Structure of wireless sensor network	47
Applications of WSN	48
Characteristics of WSN	49
Participatory sensing technology	49
Conclusion	51
Key terms	51
Questions	52
Embedded Platforms for IoT	53
Introduction	
Structure	
Objectives	
Embedded system in IoT	
Challenges of IoT embedded software	
Embedded computing examples	
Central heating systems	
GPS	
Medical devices	
Automotive system	
Factory robot	

xv

Interactive kiosks	
IoT-supported hardware platforms	
Arduino	
Netduino	
Raspberry Pi	
Beagle Bone	
Intel Galileo	
Arms cortex	
Conclusion	
Key terms	
Questions	
4. Due and many the Andreine	
4. Programming the Arduino	
Introduction	
Structure	
Objectives	
Overview of Arduino	
Arduino UNO	
Arduino Nano	
Arduino Mega	
Arduino Micro	
Arduino Leonardo	
Arduino Due	
Arduino Shields	
Arduino Lilypad	
Arduino Bluetooth	
Arduino Diecimila	
Arduino Robot	
Arduino Ethernet	
Arduino Zero	
Arduino Esplora	
Anatomy of Arduino UNO	

5.

	Arduino IDE (a programming environment)	82
	Toolbar	83
	Menu bar	85
	Programming the Arduino	85
	Programming the Arduino for IoT	88
	Coding Arduino using emulator	
	Arduino libraries	91
	Types of Arduino libraries	93
	Standard libraries	93
	Library manager libraries	93
	User installed libraries	93
	Conclusion	94
	Key terms	94
	Questions	
Io	T and M2M Design Standards	
	Introduction	
	Structure	
	Objectives	
	M2M communication	
	Applications of M2M communication	100
	Types of M2M communication	102
	Wired communication	102
	Wired communication Wireless communication	
		102
	Wireless communication	102 102
	<i>Wireless communicationRFID</i>	102 102 103
	Wireless communication RFID NFC	102 102 103 103
	Wireless communication RFID NFC Wi-Fi	102 102 103 103 103
	Wireless communication RFID NFC Wi-Fi Cellular network	102 102 103 103 103 103
	Wireless communication RFID NFC Wi-Fi Cellular network ZigBee	102 102 103 103 103 103 104
	Wireless communication RFID NFC Wi-Fi Cellular network ZigBee Bluetooth	102 102 103 103 103 103 104 104

xvii

Focus on value	105
Take a holistic view	105
Put safety first	106
Consider the context	106
Build a strong brand	107
Prototype early and often	107
Use data responsibly	107
IoT/M2M system layers	109
IoT/M2M design standardization	110
International telecommunication union	110
Institute of electrical and electronics engineers	110
3 <i>GPP</i>	111
Internet engineering task force	112
Organization for the advancement of structured information standard	113
International organization for standardization	113
Open mobile alliance	113
Communication technologies in IoT	113
Bluetooth	114
Zigbee	114
Z-wave	115
Wi-Fi	115
Cellular	115
NFC	115
LoRaWAN	116
Data enrichment	116
Method for data enrichment	117
Benefits of data enrichment	118
Data consolidation	119
Importance of data consolidation	120
Data consolidation techniques	120
Data consolidation challenges	121
Ease of designing and affordability of IoT systems	122

	Conclusion	
	Key terms	
	Questions	
6.	Network and Communication Aspects of IoT	
	Introduction	
	Structure	
	Objectives	
	Architecture of IoT	
	Centralized IoT Architecture	
	Fog Computing IoT Architecture	
	Edge Computing IoT architecture	
	Hybrid IoT Architecture	
	Network and communication aspects	
	Protocols used in IoT	
	Physical layer protocols	
	Data link layer protocols	
	Network layer protocols	
	Transport layer protocols	
	Message Queuing Telemetry Transport	
	Constrained Application Protocol	
	Hypertext Transfer Protocol	
	Application layer protocols	
	Wireless medium access issues	
	MAC protocol survey	140
	Requirement of MAC protocol	
	Sensor deployment	
	Classification of sensor deployment	
	Random deployment	
	Deterministic deployment	
	Node discovery	
	Methods of node discovery	

xix

Process of node discovery	
Data aggregation	
Importance of data aggregation	
Data dissemination	
Importance of data dissemination	
Conclusion	
Key terms	
Questions	
7. IoT Design Challenges	
Introduction	
Structure	
Objectives	
IoT design challenges	
Interoperability	
Security	
Power consumption	
Scalability	
Data processing	
User experience	
Development challenges of IoT	
Security	
Connectivity	
Cross-platform compatibility	
Data collection	
Costs	
Reliability and hardware	
Ease of integration	
Development skillset	
Quality control	
Design	
Security challenges of IoT	

Incorrect access control	
Overly large attack surface	
Outdated software	
Lack of encryption	
Data Interception	
Data tampering	
Application vulnerabilities	
Lack of trusted execution environment	
Vendor security posture	
Insufficient privacy protection	
Intrusion ignorance	
Insufficient physical security	
User interaction	
Other challenges	
Smart sensors	
Device management	
Lack of regulation	
Interoperability	
End-user challenges	
Conclusion	
Key terms	
Questions	
8. Applications of IoT	
Introduction	
Structure	
Objectives	
Applications of IoT	
Smart metering	
Architecture of Smart metering system	
Components of smart metering system	
Smart Health	

xxi

Healthcare monitoring using IoT	
Remote patient monitoring	
Glucose monitoring	
Heart-rate monitoring	
Hygiene monitoring	
Depression and mood monitoring	
Parkinson's disease monitoring	
Smart inhalers	
Ingestible sensors	
Smart pill bottles	
Connected contact lenses	
Robotic surgery	
Moodables	
Healthcare charting	
Smart video pills	
Hearables	
Framework of smart health	
City automation	
Traffic management	
Air pollution	
Healthcare	
Public transport	
Water management	
Buildings	
Waste management	
Parking	
Natural disaster management	
Infrastructure	
Automotive applications	
Fleet and driver management	
Driver assistance and safety	198
Real time vehicle telematics	

xxii

Cellular vehicle to everything	
IoT based predictive maintenance	
In-vehicle infotainment and comfort	
Home automation	
Applications of home automation	
Lighting	
Bathrooms	
Gardens	
Kitchen	
Security system	
Heating, ventilation, and air conditioning	
Doors and windows	
Home routine	
Smart cards	
Working of smart cards	
Types of smart cards	
Contact-based smart cards	
Contactless cards	
Hybrid smart cards	
Memory smart cards	
Microprocessor smart cards	
Advantages of smart cards	
Security	
Information persistence	
Disadvantages of Smart cards	
Communicating data with H/W units in IoT systems	
Designing smart street lights in smart city	
IoT in mobile devices	213
Conclusion	214
Key terms	215
Questions	216

xxiii

pendix: Hands-On Practical Problems2	217
Introduction2	217
Program 1- Code the Arduino for sensing temperature and humidity2	217
Hardware required2	218
Program 2- Code the Arduino for connecting ultrasonic sensor2	220
Hardware required2	220
Program 3- Code Arduino for connecting MQ2 gas sensor for detecting gases2	222
Hardware required	
Program 4- Code Arduino for connecting Bluetooth module2	
Hardware required	
Program 5- Code Arduino for using a Wi-Fi module2	226
<i>Hardware required</i>	26
Program 6- Code Arduino for monitoring sensor data over the internet .2	229
Hardware required2	229
Program 7- Code Arduino for using a Wi-Fi module2	232
Hardware required2	232
Program 8- Code Arduino for creating a local server	234
Hardware required2	234
Program 9- Code Arduino for controlling a light/fan at home2	236
Hardware required2	.37
Program 10- Code Arduino to control devices connected to an Arduino rom the address bar of a web browser2	238
Hardware required2	239
Program 11- code Arduino for reading and updating sensor data over cloud2	241
sensor data over cloud2 lex	

Kup ksi k

CHAPTER 1 Introduction to Internet of Things

Introduction

Experts in the business coined the term **Internet of Things** (**IoT**) over a decade ago. However, it has only recently gained widespread acceptance and popularity. The term IoT refers to the overarching concept of smart gadgets' ability to detect and collect data about their immediate environments and then share that data with others over the Internet, where it may be analyzed and used in a variety of intriguing ways.

As a result, the concept of the IoT improves connection "anytime, anywhere" for "everyone." In most cases, IoT is expected to provide a fast-moving network of hightech gadgets, services, and protocols that goes well beyond simple peer-to-peer data exchange. The pervasive nature of IoT connections necessitates the Internet connection of a surprisingly large number of devices. Connected devices are projected to be 30.9 billion by 2025.¹

 $[\]label{eq:linear} 1 \ https://www.statista.com/statistics/1101442/iot-number-of-connected-devices worldwide/#:~:text=IoT%20and%20non%2DIoT%20connections%20worldwide%202010%2D2025&text=The%20total%20 installed%20base%20of,that%20are%20expected%20in%202021 .$

Figure 1.1 shows a comparative chart of increase in IoT and non IoT devices:

Figure 1.1: IoT and non IoT devices worldwide from 2010 to 2015

When these devices are connected to the web, they will each be given a distinct number known as an IP address. To handle a wide variety of network devices, however, IPv6 needs to be used instead of IPv4, which has a finite number of available addresses. As a result, IPv6 will be crucial for the future growth of IoT.

IoT may be defined in several ways and encompasses many facets of modern life, from smart homes and cities to linked vehicles and infrastructure to personal tracking technology. It can help you count the number of windows, doors, electrical outlets, lights, machines, and air conditioners in your own home.

Structure

In this chapter, we will learn about the following topics:

- Internet of Things
- Conceptual Framework
- Architectural View of IoT
- Technologies behind IoT
- Sources of IoT

Objectives

This chapter provides a quick introduction to the basics of IoT. A reader who desires to learn about the ability and scope of IoT can study the vision and expansion of

IoT. After reading this chapter, the reader will be able to understand the conceptual framework and architecture of IoT. The reader can realize technologies that support IoT and different sources of IoT after reading this chapter.

Internet of Things

IoT has evolved from an abstract concept to a tangible reality since the term's inception in 1999. The proliferation of IP networks, the growth of always-on digital environments, and the maturation of data analytics are just some of the factors responsible for this. Forecasts predict that IoT devices will be almost 29 billion by 2030 just triple from 9.7 billion in 2020.² Despite its growth, IoT is still something of a mystery, a notion that is discussed in generalities despite its clear advantages. *Figure 1.2* illustrates the forecasted number of IoT connected devices worldwide from 2022 to 2030:

Figure 1.2: Number of IoT connected devices from 2019 to 2030

IoT may be defined as the expansion of the internet and other network connections to various sensors and devices (or "things"), granting even seemingly insignificant items like lightbulbs, locks, and vents having enhanced computational and analytical capabilities.

The **Internet of Things** is the network of physical objects—devices, vehicles, buildings, and other items embedded with electronics, software, sensors, and network connectivity—that enables these objects to collect and exchange data. One

2 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

of the main factors in IoT's rising popularity is its interoperability. In IoT, the "things" are commonly referred to almost every physical object equipped with embedded hardware / software and connectivity features capable of collecting and exchanging data from their surroundings with other devices and networks. Devices may carry out their duties with little or no intervention by humans because of the data analysis and processing they undergo.

The exponential growth in the number of connected devices is driving the development of more complex algorithms that enables greater degrees of automation and the addition of new levels of insight into the data currently being shared and analyzed. As a result of the wide range of devices that may be linked to it, IoT has opened new possibilities for both individuals and whole businesses.

Two distinct "Internet-centric" and "thing-centric" approaches may be taken to understand IoT's ultimate goals and potential. The approach that focuses on Internet services are termed as Internet centric and the "things" create data, which is the primary emphasis of the things -centric design. Embedded electronics have a starring role in the "thing-centric" design. Following are few of the several forces that are driving the expansion of the IoT inside the digital economy:

- Innovative and highly effective mobile, wearable, or linked gadgets.
- Applications (apps) that push the limitations of mobile networks due to high data use.
- New **Platform-as-a-Service** (**PaaS**), mobile point-of-sale, and independent software vendor platforms will spur an uptick in the creation of cloud-based applications and those that rely on material stored in the cloud.
- Mobile video is an example of a new kind of application that will have a major impact on the need for costly capacity increases in existing network infrastructure.

The exponential development in demand for mobile-connected devices is guaranteed by device evolution, cloud-based application innovation, and the spread of communication technologies across all sectors. This means that over the next decade, both throughout and performance expectations for individual devices will rise.

Since everyone gives IoT their own meaning based on their own viewpoint, there are many different interpretations of the term coexisting together. The definition combines the concepts of the Internet and Things. The first makes it network-centric, while the second drives it toward items that are fused together and eventually settle into a single design.

IoT refers to a "*global network of linked items*" that may be specifically addressed using established means of digital communication. The basic problem with IoT is, coming