Building Modern
Web Applications
with
ASP.NET Core Blazor

Learn how to use Blazor to create powerful,
responsive, and engaging web applications

Brian Ding

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-798

www.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

i1l

Dedicated to
My beloved parents:
Zhong Ding
Yi Hu
&

My wife, Haoran Diao

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

iv

About the Author

Brian Ding has over 8 years of experience in TypeScript and .NET development,
specializing in areas such as WinForm, WPE, ASPNET, and ASPNET Core.
Currently employed at BMW Archermind Information Technology Co Ltd, he
holds the position of tech leader, where he focuses on creating engaging digital
driving experiences for BMW customers. Throughout his career, Brian has worked
in diverse domains including Software Development, DevOps, Automation tools,
and Cloud Technologies. His passion lies in coding and developing scalable
solutions that are easy to maintain and adaptable.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

About the Reviewer

Trilok Sharma is a seasoned technical architect with 14 years of expertise in
designing, developing, and implementing enterprise-level solutions on the
Microsoft technology stack. Throughouthis career, Trilok Sharma has demonstrated
mastery in Microsoft technologies, including Blazor Server, Blazor Web Assembly
(WASM), .Net 7.0, Net Core, C#, Angular, React, SQL Server, Azure, and AWS.
He has a strong command over object-oriented programming principles and has
leveraged their knowledge to architect scalable and efficient applications.

With their strong technical understanding, attention to detail, and commitment
to quality, Trilok Sharma continues to make valuable contributions as a technical
reviewer in the Microsoft technology space.

Trilok holds a Bachelor'sin Computer Science and MBA in Project +IT Management.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

vi

Acknowledgement

This book would not exist without the help of many people, mostly including the
continuous support from my parents and my wife's encouragement for writing
the book. They've taken most of the housework so that I can focus on writing the
book — I could have never completed this book without their support.

My gratitude also goes to the team at BPB Publications for being supportive
enough to provide me with quite a long time to finish the book. This is my first
book ever, and I would like to thank them for their professionalism, guidance, and
patience along the way.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

vii

Preface

This book covers many different aspects of developing Blazor applications, a
modern way to build rich Ul web applications. And this book introduces how
to leverage .NET and its eco-systems to build a modern enterprise application.
This book will introduce WebAssembly and how it enables web applications to be
written in any programming language. It also compares different Blazor hosting
models and the strategy to select a model that suits that business requirements.

This book takes a demonstrative approach for Blazor learners. Every chapter comes
with a lot of code examples and Blazor source code analysis. It covers basic Blazor
directives and components and how these concepts can be combined together
to build a more complex customized component. This book also explains some
advanced techniques to control component rendering and improve performance.

This book is divided into 13 chapters. It will start with the introduction of
WebAssembly and cover the basic concepts in Blazor Framework and some
advanced techniques you may find handy when developing production-ready
applications, as well as explaining source code structures and designing patterns
and styles. So, readers can learn from the bottom how a Blazor application is
running. The details are listed below.

Chapter 1: WebAssembly Introduction- will introduce what WebAssembly is
and the roadmap of WebAssembly. The chapter will explain why WebAssembly
is proposed while JavaScript is powerful enough. A hello world demonstration is
given by compiling C/C++ source code into WebAssembly. Calling WebAssembly
functions from JavaScript code will also be discussed. WASM binary format will
be discussed along with the introduction to different sections in the binary code.
It will introduce the popular languages that can produce WebAssembly modules,
and ASPNET Core Blazor is one of those platforms that can be leveraged to build
web applications beyond WebAssembly.

Chapter 2: Choose Your Hosting Model- will discuss WebSocket and compare the
difference between WebSocket and HTTP. Will introduce SignalR, a .NET library
that implements WebSocket and can fallback to long polling for compatibility. This
chapter will introduce the basic structure of a Blazor application and compare
three different Blazor hosting models, Blazor Server, Blazor WebAssembly, and
Blazor Hybrid.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

viii

Chapter 3: Implementing Razor and Other Components- will cover basic
components. Blazor applications are made of components, and they share many
useful features, including directives, binding, cascading, and event handling. It will
explain the lifecycle of a typical component by introducing those virtual lifecycle
methods that can be overridden. It will introduce layout, a special component type
that can be useful in building an application with multiple functional spaces. Will
introduce some popular third-party libraries that we can use to build enterprise
applications.

Chapter 4: Advanced Techniques for Blazor Component Enhancement- will
cover the components source code and learn more advanced components features.
You will learn how to reference other components in code, how to preserve
components, how to use components with a template, and how to define a CSS
style dedicated to a specific component using CSS isolation.

Chapter 5: File Uploading in Blazor- will cover the common file transfer protocols
and compare the differences between them. Will learn the component used to
upload files in Blazor Framework. This will explain the source code and detail
usage with code examples.

Chapter 6: Serving and Securing Files in Blazor- will explain one of the most
important mechanisms in ASPNET Core, middlewares. Middles work as pipelines
handling the requests from clients. We will cover serving static files and dynamic
files in Blazor framework, and a few basic security rules you will apply to protect
servers from attacks.

Chapter 7: Collecting User Input with Forms- will cover web forms which are
generally used when data input is required from application users. Will explain
the default data validation implemented in the source code and how to customize
validation rules and error prompts. Will cover some key events and concepts in
Blazor forms, including submission, context, and state.

Chapter 8: Navigating Over Application- will cover page navigations in a Blazor
application. An enterprise level application usually needs multiple pages to fulfil a
complete business requirement. It will also explain the key routing components in
Blazor framework with source code and introduce different types of routing with
parameters. And we will cover the navigation events and how to navigate in an
asynchronous approach.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

ix

Chapter9: NET and JavaScriptInterop- will cover serialization and deserialization
with JSON, a common way to communicate between web services, and that
applies to the interop between .NET and JavaScript as well. Will explain how to
load customized JavaScript code in a simple approach and in a more dynamic
approach. Will cover calling JavaScript from .NET and the vice versa, with code
examples. Will introduce some advanced topics related to .NET/JavaScript interop
in Blazor, including cache, element reference and type safety.

Chapter 10: Connecting to the World with HTTP- will cover the most famous HTTP
protocol, and the separation of front-end and back-end services. HI'TP protocol is
mostly used between the front-end and back-end. Will cover the limits and risks
come with the CORS when applications are connected using HTTP protocol. Will
explain built-in types HttpClient and HttpClientFactory that will be used when
communicating with the outside world with the source code. Will cover RPC and
gRPC, an implementation of RPC from the Google with code examples.

Chapter 11: Data Persistence with EF Core- will cover data persistence with
EntityFramework Core and compare 2 key concepts, stateless and stateful.
EntityFramework Core is popularly used in .NET Core project to store data in a
selected database. Will explain the design ideas behind EntityFramework Core
and analyze its source code to learn the patterns supporting different databases.
Will cover key concepts in EntityFramework Core including entity, context, query,
and migration with detailed examples.

Chapter 12: Protecting Your Application with Identity- will cover authentication
and authorization in Blazor applications. Will explain the authentication
mechanism in Blazor and learn the source code of AuthenticationStateProvider,
which can be used to implement a customized authentication. Will cover different
authorization approaches, including role-based and policy-based authorizations,
with code examples.

Chapter 13: Deploying with Docker and Kubernetes- will cover Blazor application
deployments. One of the modern ways to deploy your applications is using
Docker techniques and Kubernetes. Readers will learn how to containerize Blazor
applications and deploy it with Azure Kubernetes Services and Azure Container
Registry.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/ilgakbz

The code bundle for the book is also hosted on GitHub at https://github.com/
bpbpublications/Building-Modern-Web-Applications-with-ASP.NET-Core-
Blazor. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications' Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

https://discord.bpbonline.com

Kup ksigzke

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

http://helion.pl/page354U~rt/e_43sp_ebook

xii

Table of Contents

1. WebAssembly Introduction 1
INErOAUCHON ..t 1
SHUCHUT ..ottt 1
ODJECHIVES ..ttt 2
What is WEDASSEMDLYccvuiiiiiiiiiiiciiiiciiiiccticceieicsee e 2
History of WebASSemDbIycooiveiiieiiiiicicc e 2
Hello World with WebASSEemMDIYcvvruriimiieiciciicicicice e 3
Call WebAssembly from JavaScriptcoceeiieieinicieieiicieiieeeenen 4
WebAssembly in the future.........ccceviciiiiciiiiiiiicccccccces 17
Popular WebAssembly languages..........ccceeuvuvviirinininiinincnininicncnsseseinnnnes 18
INET COT@ ottt s 18
ASPINET COT€ ... sacsaes 18
When to choose ASP.NET Core Blazor..........ccccvuiuviiiicinicinicieicisicnsieninns 18
CONCIUSION ..ottt 19

2. Choose Your Hosting Model 21
INErOAUCHON ..o 21
SHUCEUT ..ottt ens 21
ODJECHIVES ..evvteiieiettt s 22
WEDSOCKEL ..ottt 22
SIGNALR .ottt s 23
BlazZor SEIVET ...ttt 32
Blazor WebAssemblyccouiiiiiiiiiiiiiiiiccr s 34
Blazor Hybrid ... 38
CONCIUSION ..ottt 38

3. Implementing Razor and Other Components..........cccevururerencnee. 39
INtrOdUCHON ...ttt 39
SHUCEUT ..ottt ens 39
ODJECHIVES ...ttt 40
Razor COMPONENLSooviiiitiiitiietcct s 40

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

DAT@CHVE ettt 42
Directive AtribULe.......ovii 45
One-way Binding......cccoeeveiinieiniieiiiiceie s 45
Binding EVent ... 46
Binding FOrmat ..o 46
Unparsed ValUue ... 48
TWo-Way bINding......ccceveveiieiiiiit s 49
CaSCAAINGvervrvereiieiciete s 53
Event Handlingcoveueiiirieiiiit s 56
LIECYCLE ottt 59
LayOUL.ecvetiteett s 60
LIDTATIES c.ecvviiieciiiiiciicii s 61
FaSE-DIAZOT ..ottt 61
MUAEBIAZOT ...ttt 61
Ant Design BIAZOTcucvovvuiiiieiiiieieiiiiiieieiieieietsie e 62
BootStrapBIAZOTcovovvvviiiiiiiiiciiiiiicciccc 62
CONCIUSION oottt eaane 62
4. Advanced Techniques for Blazor Component Enhancement...............ccucee.. 63
INErOAUCHON ..ottt 63
SHUCEUT@ ..ottt 63
Component Reference........oeueveiiveieiiicieicc e 64
ComPONENts PreSEIrVINGceiiririrrercriirinieieisceeseee s sessasaees 66
Template COMPONENLSc.coveviiiieiiiiiicic s 71
CSS ISOLatioN.....ciiiciiiiiiiictcc s 77
CONCIUSION ottt 80
5. File Uploading in Blazor 81
INErOAUCHON .ottt 81
SHUCEUT ..ottt ens 81
ODJECHIVES ...ttt 81
Build comments for ESROP.......cccvueuieinieiieiieiiesieeieenee e ensesensesenseseenes 82
File transfer ... 82
File UPload ..ottt s 83

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

xiv

TAPS ettt s 92
CONCIUSION .ttt ettt er et et re sttt se s nes 93
6. Serving and Securing Files in BIazoriiivirnnnecncrcncnnnnnes 95
INErOAUCHON .t 95
SEUCEUTE ..ttt 95
ODJECHIVES ...ttt 96
MIAAIEWATE ...ttt ettt ettt s et sn et eae s 96
Serve StatiC Files. ...ttt 102
Serve Dynamic FAles ... 106
Security AdVICE ..ot 109
CONCIUSION .ttt ettt ettt s b e 109
7. Collecting User Input with Forms 111
INEPOAUCHON ...ttt ettt tes e st ss et snenens 111
SEUCEUTE .ttt st sttt sb e 111
ODJECHIVES ..ottt e 112
FOIINS ottt 112
EditFOrm e 115
INPULBASE ..ot 119
Validation ...c.ceveueeieiciiiiieiccnicctettccce ettt s 122
Custom Validation......c.cceeeeeneueinieinieiininieiniectereenreenteresessesesesesessesessesesnen 129
FOrm SUDMISSION.....cutviiuiirieitiiciictnieestiettectice ettt et nenes 133
EditContext And FOrm State.........coeveueeivenininicciininiecciiceccinenenenes 133
CONCIUSION .ottt ettt ettt s b 136
8. Navigating Over APPlicatioN.....cvecnrnriesiisinessisncsisissssssscscssssssssssesesssssssses 137
INEPOAUCHON ..ttt ettt 137
SEUCEUTE .ttt ettt st b e 137
ODJECHIVES ..ottt e 138
ROULET ottt 138
ROULEALIIDULE .. 140
NAVLINK ottt aesees 146
Route parameters..........occueeieiiiiiiiee e 152
Navigation events and Asynchronous navigationc..ccecveceicunnans 156

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

X0

ASP.NET Core integration.........coeveeeeeeeieieeeieieieieeeiis e 158
CONCIUSION ...ttt esas 160
9. .NET and JavaScript Interop 161
INErOAUCHON ..ot 161
SHUCEUT ...t 161
ODJECHIVES ...ttt 162
SerialiZationN ...ueceiiiciiiciiiii s 162
Loading JavaScript ...ttt 163
INIHAIZET vttt 165
Calling JavaScript from NET.......cccccoeviiiininiiiiiciccnes 167
JavaScript iSOlationccceveueuiiiiiiiriict s 172
Calling .NET from JavaScript.......ccccevvvirinininiiniiiiccicnesssensnens 174
CACKE ettt ettt et 179
Element reference ... 180
TYPE SAfRLY cevviieiittt s 181
CONCIUSION ..ttt 182
10. Connecting to the World with HTTP 183
INErOAUCHON ..ot 183
SHUCEULE ...t 183
ODJECHIVES ..evviieittet e 184
Front-end and back-end separation...........cccceeueeeeieeeeieinicceceene 184
HTTP ProtoCOL....u ittt 184
CORS ..ot 188
HEPCHENL oottt esas 189
HttpClientFactory....uoveueveiieiicieiicireet s 191
HHPCHENE AGAIM ...ttt 192
GRPC . 193
CONCIUSION ..ttt 194
11. Data Persistence with EF Core 195
INErOAUCHON .ot 195
SHUCEULE ...t 195
ODJECHIVES ..evviieittet e 196

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

xvi

Stateless and Stateful..........cceueveeieiiiriiiii 196
EntityFramework COre ...ttt 196
Context ODJECt ...ttt 197
Data entities ... 201
Database migrationcccceeiiiiniiiciiincc e 204
Data UPAate ..o 208
Data QUETY ..o 212
CONCIUSION ...ttt enens 218
12. Protecting Your Application with Identity 219
INErOAUCHON .ot 219
SHUCEUT ...ttt 219
ODJECHIVES ...ttt 220
AUheNtiCationN......cccueviiuiieiiicrcieicceccetreerereteae et sese s sseaeeseneaes 220
AuthenticationStateProvVider ... 221
AUROTIZALON ..ttt sees 227
Role-based AUthOTiZAtiON.cceuevieeuieeieeeiiecee e neaes 235
Policy-based AUthOTIZatioN........ccccueiviiiiiiniiiiiiiiicecce s 237
ASP.NET Core Identitycccovviviviiiiiriiiiiiiciiininisiiscccencnenennes 239
CONCIUSION ...ttt esas 240
13. Deploying with Docker and Kubernetes 241
INtrOdUCHON ... 241
SHUCEUT ...ttt 241
ODJECHIVES ...ttt 242
What i8S DOCKETviiiiiiiiiiiiiciic e 242
Building Docker IMagecccuevieiueieiniiieieiicie e 243
IMaGE LAYET w.evvieecttt e 246
What 18 K8S......uiiiiiiiic s 248
K8S COMPONENLES ..ottt 248
Deploy to AKS — K8S 0N AZUTEcuovvvviiriiiiiiinciciiciicessssssssnnes 249
CONCIUSION ..ottt 259
Index 261-264

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

CHAPTER 1

WebAssembly
Introduction

Introduction

In this chapter, we will introduce the concept and roadmap of WebAssembly and
how it enables web applications to be written in any programming language. We
will also discuss a few popular WebAssembly languages and illustrate the benefits
of building a web application with ASP.NET Core Blazor.

Structure

In this chapter, we will discuss the following topics:

What is WebAssembly

How to compile a WebAssembly module
What does a WebAssembly module look like
NET Core with WebAssembly

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

2 Building Modern Web Applications with ASP.NET Core Blazor

Objectives

This chapter is intended to guide you briefly through the world of WebAssembly,
get familiar with WebAssembly modules and how .NET Core is involved with
WebAssembly. We will learn how to install Emscripten SDK and will also get
familiar with emcc command. We will explore the world of WebAssembly binary
format and understand how a module was constructed. Finally, we will introduce
the new generation of .NET --- NET Core with the WebAssembly framework, ASP.
NET Core Blazor.

What is WebAssembly

WebAssembly (abbreviated as Wasm) is a target for modern languages for
compilation of more than one language, designed to be highly efficient while
maintaining a safe sandbox environment. The definition seems to be too official.
But if we break it down to two words Web and Assembly, we might get a better
understanding of WebAssembly. Web, of course, everyone from a three-year-old kid
to the elders nowadays know that they are living in the world of it. We can buy
goods from Amazon.com, watch videos on Youtube.com and check out how friends'
life is on Facebook.com.

Assembly, on the other way around, might not be that obvious to those who do not
work with computer science. From recent years, most developers write programs
with advanced programming languages like Golang, C# or Java. But earlier, we did
not have those advanced languages; programmers used to write code with Assembly,
which is more specific to the hardware platform. For example, writing Assembly code
for x86 CPU and ARM CPU will have different key words and syntax. As alanguage
that is closer to the hardware level, Assembly language usually has higher runtime
efficiency than advanced languages. Now, you might guess that WebAssembly is
another assembly language running in the "web" - browsers.

History of WebAssembly

Early in 1990s, the first web was created. At that time, the web was mainly used by
the scientists to share information. The web was designed to be the media of static
content. HTML defines the content. URL locates the resources in the world of webs.
The client (browser) would then send a HTTP request to the server through URL
and then render the HTML content returned by the server. In this process, all the
information transported was static, and that means there was no way that a user
could interact with the web.

In 1995, Branden Eich designed anew language called JavaScript within only ten days.
It looks like Java, but is easier to use than Java, and even non-professional website

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

WebAssembly Introduction 3

workers can understand it. However, Branden himself seemed to not like JavaScript
that much. He was of the belief that everything that is excellent is not original, and
everything original is not excellent. With the Chrome from Google getting more and
more popular, JavaScript soon took place everywhere on the website. Even on the
server nowadays. Engine V8 from Google is enabling JavaScript to be used in a large
and complex project.

Hello World with WebAssembly

JavaScript has been good enough, then why do we bother creating another
"Assembly Language" for the web? As far as we all know, JavaScript is a dynamic
language, which means the type of a variable could be changed in runtime, unlike
C# or Java. For programmers or developers, it is very convenient to write code, but
it becomes cumbersome when it comes to the interpreter. The interpreter must judge
of which type the variable is while running the code. Even armed with JIT compiler,
compiling JavaScript into machine code ahead, sometimes, it must be rolled back to
the original code under some circumstances. For this reason, many companies that
build browsers are looking for a more performance enhanced solution.

In April 2015, WebAssembly Community Group was founded. Two years later,
WebAssembly became one of the W3C standards. In 2019, WebAssembly became
one of the standard web languages, along with HTML, CSS, and JavaScript. Through
the years, most of the popular web browsers have supported WebAssembly.

Many languages, for example, C/C++, C#, Go can be compiled to WebAssembly
now.

Let us take C/C++ as an example and write a simple C++ program that says Hello
World. Save it as hello.cpp under my-hello-world-demo:

#include <stdio.h>

int main() {
printf("Hello World!\n");

}

Emscripten SDK is an open-source SDK that compiles C/C++ to WebAssembly, and
auto-generates JavaScript code that can run the .wasnm file. Install the SDK following
the instructions here https://emscripten.org/docs/getting_started/downloads.html
and compile the code with the following command:

emcc hello.cpp -o hello.html

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

4 Building Modern Web Applications with ASP.NET Core Blazor

Now, you will get three output files, hello.html, hello.js and hello.wasm,
shown as follows:

my-hello-world-demo

I—hello.cpp

L—hello.html
L—nello.js
L—hello.wasm

hello.html is the default web page, and hello. js is the code logic running on it,
designed by the Emscripten SDK.

Next, you will install Python from https://www.python.org. Now, open your
command line or terminal and move to my-hello-world-demo and enter python -m
http.server, python will start a server listening on port 8000. Open your browser
and navigate to http://localhost:8000, it will show the files under my-hello-world-
demo, then click hello.html, a default frontend page provided by emscripten will
show. Refer to Figure 1.1:

emscripten

Figure 1.1: Default Frontend Web Page

In the black box area, it shows Hello World! that we printed. A web that is actually
running the C++ code. If we open the DevTools and switch to Console Tab, Hello
World! is also printed there.

Call WebAssembly from JavaScript

Now, let us try something different, write a simple C++ function that can be called
by the page using JavaScript. Create another file function.cpp and write the
following code:

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

WebAssembly Introduction

5

#include <emscripten.h>

extern "C"

{
EMSCRIPTEN_KEEPALIVE
int myAddFunc(int a, int b)
{
int ¢ = a + b;

return c;

EMSCRIPTEN_KEEPALIVE
int myMinusFunc(int a, int b)
{

int ¢ = a - b;

return c;

}

We have two functions here, myAddFunc will get the sum of two integers and
myMinusFunc will get the subtraction. Similarly, compile with the command:

emcc function.cpp -o function.html

And the folder would look like:

my-hello-world-demo
F—r*unction.cpp
L—~function.html
L—function.js
L—function.wasm
L—hello.cpp
L—hello.html
L—hello.js
L—hello.wasm

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

6 Building Modern Web Applications with ASP.NET Core Blazor

Weuse python tostartaserveragainand gotohttp://localhost:8000/function.
html. Nothing was printed in the black box area this time and that's because we did
not print anything in the function! But we can call the two math functions provided
by WebAssembly this time. Open the DevTools, switch to the Console tab and write
_myAddFunc(1,2) and you will get 3 as the result. In fact, when you are typing

_myAddFunc the IntelliSense will tell you that the function does exist in the context

of page function.html. Try _myMinusFunc and it will work as well. How exactly the
web page loads the two math functions we wrote here? Let us take a look at the
generate function.html and function.js:

<script
var
var

var

var

type="'text/javascript'>
statusElement = document.getElementById('status');
progressElement = document.getElementById('progress');

spinnerkElement = document.getElementById('spinner');

Module = {

preRun: [],

postRun: [],

print: (function() {
var element = document.getElementById('output');
if (element) element.value = ''; // clear browser cache
return function(text) {

if (arguments.length > 1) text = Array.prototype.slice.

call(arguments).join("' ');

console.log(text);
if (element) {
element.value += text + "\n";

element.scrollTop = element.scrollHeight; // focus

on bottom

¥
»O,
canvas: (function() {
// draw canvas

DO,
setStatus: function(text) {

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

WebAssembly Introduction 7

// set status
s
totalDependencies: 0,
// some code here
s
Module.setStatus('Downloading...");
// some code here
</script>
<script async type="text/javascript"” src="function.js"></script>
In the HTML body; it defines the frontend layout and page logic. We will focus on
the script section. It first initiated a Module object, which has a few properties, for
example, print, canvas, setStatus. print shows Hello World! in the previous code
example on the web page by changing the value of the element with ID "output" and
print it to the console as well with console.log(text);. setStatus is actually
called when the page is first loaded and if you refresh the page a few times quickly,
you will see a caption says Downloading.... And you might already guess it. It is

downloading the WebAssembly file, function.wasm. Next, we will discuss how the
function.wasm was loaded and how the function was called:

var asm = createWasm();

function createWasm() {
function receivelnstance(instance, module) {

var exports = instance.expor'ts;

Module["asm'] = exports;
}
function receivelnstantiationResult(result) {

receiveInstance(result['instance']);

}

function instantiateArrayBuffer(receiver) {
return getBinaryPromise().then(function (binary) {
return WebAssembly.instantiate(binary, info);
}).then(function (instance) {

return instance;

})s

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

8 Building Modern Web Applications with ASP.NET Core Blazor

function instantiateAsync() {

if (!wasmBinary && typeof WebAssembly.instantiateStreaming ==
"function' &&

!isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) &&
I'ENVIRONMENT_IS_NODE &&

typeof fetch == 'function') {

return fetch(wasmBinaryFile, { credentials: 'same-origin'’
}) .then(function (response) {

var result = WebAssembly.instantiateStreaming(response,

info);
return result.then(
receiveInstantiationResult,
function (reason) {
return
instantiateArrayBuffer(receiveInstantiationResult);
1)
1)
} else {
return instantiateArrayBuffer(receiveInstantiationResult);
}
}

if (Module['instantiateWasm']) {
var exports = Module['instantiateWasm'](info, receivelInstance);

return exports;

instantiateAsync();

return {};

function createExportWrapper(name, fixedasm) {
return function () {

var displayName = name;

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

WebAssembly Introduction 9

var asm = fixedasm;
if (!fixedasm) {
asm = Module['asm'];
}
if (lasm[name]) {

assert(asm[name], 'exported native function
+ '" not found');

}

return asm[name].apply(null, arguments);

+ displayName

s

var _myAddFunc = Module["_myAddFunc"]
createExportWrapper("myAddFunc");

var _myMinusFunc = Module["_myMinusFunc"] = createExportWrapper("myMinusFunc");

Here is the key code of function.js, and it is fairly self-explained. A
call to createWasm() starting the process. Inside this function, it goes to
instantiateAsync() and we can guess from the function name that it will initiate
the WebAssembly. And it does provide two ways to instantiate. If possible, it will
fetch the wasm file through http protocol, in this case, function.wasm.

In this way, the wasm was loaded as a network stream, so WebAssembly.
instantiateStreaming was used to process the http response, and if you open
DevTools, switch to Network tab and refresh the page again, you will notice a request
to http://localhost:8000/function.wasm and it returns 200. Refer to Figure 1.2:

¥ General

Request URL: http://localhost:3888/function.wasm
Request Method: GET

Status Code: @ zpe 0%

Remote Address: [::1]:8608

Referrer Policy: strict-origin-when-cross-origin

¥ Response Headers View source
Content-Length: 262
Content-type: application/wasm
Date: Thu, 38 Jun 20822 12:42:33 GMT
Last-Modified: Wed, 29 Jun 2822 13:81:18 GMT

Server: SimpleHTTP/@.6 Python/3.18.5

Figure 1.2: fetch function.wasm

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

10 Building Modern Web Applications with ASP.NET Core Blazor

WebAssembly.instantiateStreaming() will be responsible for compiling and
initiating the WebAssembly module, and it will be more efficient thanload wasm code
directly by WebAssembly.instantiate(). In practice, most of the WebAssembly
frameworks will choose WebAssembly.instantiateStreaming() to load the
WebAssembly and this explains that some websites built by WebAssembly will be
take longer to load for the first time than a website built with purely JavaScript, since
they will download the .wasm file through network.

Otherwise, it will fall back to WebAssembly.instantiate() inside
instantiateArrayBuffer(), and the name of the function indicates that it is load
the binary format of .wasm directly.

Once the WebAssembly module was loaded, receiveInstantiationResult() will
be the callback to handle the instance of WebAssembly, and instance.exports will
be assigned to Module['asm'] to save the exports from the WebAssembly. Finally,
two lines of code generated by the Emscripten SDK call createExportWrapper(),
and it will find the exported functions by name in Module['asm']. Function apply
will be used to run the desired function with arguments.

We can prove it by opening DevTools, switch to Console tab and type: _
myAddFunc(2,3) and hit enter. As expected, the result is 5. Or we could use
Module['asm'] directly: Module['asm']['myAddFunc'](4,5) and it shows 9
correctly. Great! Now, we know how the WebAssembly runs in the web, but what
exactly is in the function.wasm? Can we manually load it?

Introducing .WASM binary format
Let us try another example.

#include <emscripten.h>

extern "C"

{
EMSCRIPTEN_KEEPALIVE

int myMultiplyFunc(int a, int b)
{

int ¢ = a * b;

return c;

}

This time, we will compile it to .wasm only, without generating html and js file.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

WebAssembly Introduction 11

In the Terminal, type:

emcc manual.cpp -03 -no-entry -o manual.wasm

Notice that -no-entry is required since we do not have a main() function and we
will build in STANDALONE_WASM mode. And the folder would look like:

my-hello-world-demo
F—Ffunction.cpp
L—~function.html
L—function.js
L—~function.wasm
L—nhello.cpp
L—hello.html
L—hello.js
L—hello.wasm
L—manual.cpp

L—manual.wasm

Open manual.wasm with a binary viewer or VS Code with appropriate extensions.

00000000 00 61 73 6d ©1 00 00 00 @1 17 05 60 00 01 7f 60 .asm.... .0
00000010 00 00 60 02 7f 7f 01 7f 60 01 7f 00 60 01 7f 01 . LBRLECLEL LB
00000020 7T 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02 P p..
00000030 02 05 06 01 01 80 02 8002 06 09 01 7f 01 41 99e.een. BL.A.
00000040 88 cO 02 Ob 07 80 01 V806 6d 65 6d 6f 72 79 2 memory .
00000050 00 Ge 6d 79 4d 75 6C 74 69 70 6C 79 46 75 6e 63 . .myMultiplyFunc
00000060 00 01 19 5f 5f 69 6e 64 69 72 65 63 74 5f 66 75 ..__indirect_fu
00000070 6e 63 74 69 6f 6e 5 74 61 62 6C 65 01 00 Ob 5 nction_table..._
00000080 69 6e 69 74 69 61 6C 69 7a 65 00 00 10 5f 5f 65 initialize..._ e
00000090 72 72 6e 6f 5F 6¢ 6f 63 61 74 69 6f 6e 00 05 09 rrno_location...
00000020 73 74 61 63 6b 53 61 76 65 00 02 OC 73 74 61 63 stackSave. . .stac
000000b0 6b 52 65 73 74 6f 72 6500 03 0a 73 74 61 63 6b kRestore. . .stack
0000000 41 6¢C 6C 6T 63 00 04 09 07 01 00 41 01 b 01 00 Alloc...... A....
00000000 0a 30 06 03 00 ©1 Ob 07 00 20 00 20 01 6C Ob 04 N N
0000000 00 23 00 Ob 06 00 20 00 24 00 ©b 10 00 23 00 20 RN T
00000010 00 6b 41 70 71 22 00 24 00 20 00 @b 05 00 41 80 k"pg".$.A.
00000100 08 ©b .2

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

12 Building Modern Web Applications with ASP.NET Core Blazor

Refer to the following code consisting of the magic number:

00000000 00 61 73 6d 01 00 00 00 01 17 ©5 60 00 01 7f 60

AN AN AN AN

The first four bytes are what we called the magic numbers, 0x00 0x61 0x73 Ox6d
representing \Oasm if you convert by ASCII code. It means that this is a .wasm file.

00000000 00 61 73 6d 01 00 00 00 01 17 ©5 60 00 01 7f 60

AN AN AN AN

The next four bytes are the version number, and we have 0x01 0x00 0x00 0x00 (little
endian), version 1 here:

00000000 00 61 73 6d 01 00 00 00 01 17 ©5 60 00 01 7f 60

AN AN AN AN AN AN AN AN

00000010 00 00 60 02 7f 7f 01 7f 60 01 7f 00 60 01 7f 01

AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AA

00000020 7f 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02

AN

The 9" byte is the start of a section, which composes binary format of WebAssembly.
The starting byte of a section represents the section type, and the next byte would

be the length of the section. You may refer to the following table for more possible
values.

Id Section

0x00 custom section

0x01 type section

0x02 import section

0x03 function section

0x04 table section

0x05 memory section

0x06 | global section

0x07 export section

0x08 start section

0x09 element section

Kup ksigzke

http://helion.pl/page354U~rt/e_43sp_ebook

