NET 7
Design Patterns
In-Depth

Enhance code efficiency and maintainability with
.NET Design Patterns

Vahid Farahmandian

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-729

www.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

i1l

Dedicated to

My beloved Parents
&

My dear wife Mojgan

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

iv

About the Author

Vahid Farahmandian, who currently works as the CEO of Spoota company, was
born in Urmia, Iran, in 1989. He got a BSc in Computer Software Engineering
from Urmia University and an MSc degree in Medical Informatics from Tarbiat
Modares University. He has more than 17 years of experience in the information
and communication technology field and more than a decade of experience in
teaching different courses of DevOps, programming languages, and databases in
various universities, institutions, and organizations in Iran. Vahid also is an active
speaker in international shows and conferences, including Microsoft .NET Live
TV, Azure, .NET, and SQL Server conferences. The content published by Vahid
was available through YouTube and Medium and had thousands of viewers and
audiences.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

R/
0.0

About the Reviewers

Kratika Jain is a senior software developer specializing in .NET technologies.
She has a strong understanding of C#, ASPNET, MVC, .NET Core, SQL, and
Entity Framework. She has participated in agile project management, employs
continuous integration/deployment (CI/CD) using Azure DevOps, and
delivered robust and scalable software solutions. As a meticulous technical
reviewer, she ensures accuracy and quality in technical content. Her attention
to detail allows her to identify potential pitfalls and offer valuable insights
for improvement. With her expertise in .NET development and dedication
to enhancing technical content, she contributes to empowering developers
and enabling their success in mastering the .NET ecosystem. She is a natural
problem solver, team player, adaptable, and always seeking new challenges.
You can connect with her on LinkedIn at www.linkedin.com/in/ kratikajain29/
or on Twitter via @_KratikaJain.

Gourav Garg is a Senior Software Engineer from India who has been helping
companies to build scalable products. He holds a bachelor’s degree in software
engineering and has been programming for 11 years. He is proficient in .net,
C#, and Entity Framework. He has experience in delivering several products
and many features at his work.

Gourav has also experience with JavaScript-related tech stacks like Angular
and React. He has developed quite a few open-source libraries using ES6 and
Angular.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

vi

Acknowledgement

There are a few people I want to thank for the continued and ongoing support they
have given me during the writing of this book. First and foremost, I would like to
thank my parents for continuously encouraging me to write the book — I could
have never completed this book without their support.

I also need to thank my dear wife, who has always supported me. Finally, I
would like to thank all my friends and colleagues who have been by my side and
supported me during all these years. I really could not stand where I am today
without the support of all of them.

My gratitude also goes to the team at BPB Publications, who supported me and
allowed me to write and finish this book.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

vii

Preface

This book has tried to present important design patterns (including GoF design
patterns and Patterns of Enterprise Application Architecture) in software
production with a simple approach, along with practical examples using .NET 7.0
and C#.

This book will be useful for software engineers, programmers, and system
architects. Readers of this book are expected to have intermediate knowledge of
C#.NET programming language, .NET 7.0, and UML.

Practical and concrete examples have been used in writing this book. Each design
pattern begins with a short descriptive sentence and is then explained as a concrete
scenario. Finally, each design pattern's key points, advantages, disadvantages,
applicability, and related patterns are stated.

This book is divided into 15 chapters, including:

Chapter 1: Introduction to Design Patterns- In this chapter, an attempt has been
made to explain why design patterns are important and their role in software
architecture, and basically, what is the relationship between design patterns,
software design problems, and software architecture? In this chapter, various topics
such as Design Principles, including SOLID, KISS, DRY, etc., and Introduction to
.NET and UML are covered too.

Chapter 2: Creational Design Patterns- Creative design patterns, as the name
suggests, deal with the construction of objects and how to create instances. In C#
programming language, wherever an object is needed, the object can be created
using the “new” keyword along with the class name. However, there are situations
where it is necessary to hide the way the object is made from the user's view. In
this case, creative design patterns can be useful. In this chapter, creational design
patterns, one of the types of GoF design patterns, have been introduced, and it has
been said that these design patterns are useful for what issues.

Chapter 3: Structural Design Patterns- Structural design patterns deal with the
relationships between classes in the system. In fact, this category of design patterns
determines how different objects can form a more complex structure together. In
this chapter, structural design patterns, one of the types of GoF design patterns,

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

viii

have been introduced, and it has been said that these design patterns are useful
for what issues.

Chapter 4: Behavioral Design Patterns - Part I- This category of design patterns
deals with the behavior of objects and classes. In fact, the main goal and focal point
of this category of design patterns is to perform work between different objects
using different methods and different algorithms. In fact, in this category of design
patterns, not only objects and classes are discussed, but the relationship between
them is also discussed. In this chapter, the most popular and famous behavioral
design patterns, one of the types of GoF design patterns, have been introduced,
and it has been said that these design patterns are useful for what issues.

Chapter 5: Behavioral Design Patterns - Part II- In continuation of the previous
chapter, in this chapter, more complex and less used behavioral design patterns
are discussed, and it is shown how these design patterns can be useful in dealing
with the behavior of objects and classes. Although these patterns are less known
or less used, their use can make much more complex problems be solved in a very
simple way. In this chapter, less popular or famous behavioral design patterns, one
of the types of GoF design patterns, have been introduced, and it has been said
that these design patterns are useful for what issues.

Chapter 6: Domain Logic Design Patterns- To organize domain logic, Domain
Logic design patterns can be used. The choice of which design pattern to use
depends on the level of logical complexity that we want to implement. The
important thing here is to understand when logic is complex and when it is not!
Understanding this point is not an easy task, but by using domain experts, or more
experienced people, it is possible to obtain a better approximation. In this chapter,
it is said how to organize the logic of the domain. And in this way, what are the
design patterns that help us have a more appropriate and better design? These
design patterns are among the POEAA design patterns.

Chapter 7: Data Source Architectural Design Patterns- One of the challenges of
designing the data access layer is to implement how to communicate with the
data source. In this implementation, it is necessary to address issues such as how
to categorize SQL codes, how to manage the complexities of communicating with
the data of each domain, and the mismatch between the database structure and
the domain model. In this chapter, it has been said that in software architecture,
communication with data sources can be considered and implemented in a suitable
way. These design patterns are among the POEAA design patterns.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

ix

Chapter 8: Object-Relational Behaviors Design Patterns- Among the other
challenges that exist when communicating with the database is paying attention
to behaviors. What is meant by behaviors is how the data should be fetched
from the database or how it should be stored in it. For example, suppose a lot
of data is fetched from the database, and some of them have changed. It will be
very important to answer the question of which of the data has changed or how
to store the changes again in the database, provided that the data consistency is
not disturbed. Another challenge is that when the Domain Model is used, most
of the models have relationships with other models, and reading a model will
lead to fetching all its relationships, which will again jeopardize the efficiency.
In this chapter, an attempt has been made to explain how to connect business to
data sources in a proper way. These design patterns are among the POEAA design
patterns.

Chapter 9: Object-Relational Structures Design Patterns- Another challenge in
mapping the domain to the database is how to map a record in the database to an
object. The next challenge is how to implement all types of relationships, including
one-to-one, one-to-many and many-to-many relationships. In the meantime, we
may face some data that cannot and should not be mapped to any table, and we
should think about this problem in our design. Finally, to implement the structure
of the database, relationships such as inheritance may be used. In this case, it
should be determined how this type of implementation should be mapped to the
tables in the database. In this chapter, an attempt has been made to explain how
to implement the data source structure in the software. These design patterns are
among the POEAA design patterns.

Chapter 10: Object-Relational Metadata Mapping Design Patterns- When we
are producing software, we need to implement the mapping between tables and
classes. For the software production process, this will be a process that contains a
significant amount of repetitive code, and this will increase the production time.
So, it will be necessary to stop writing duplicate codes and extract relationships
from metadata. When this challenge can be solved, then it will be possible to
generate queries automatically. Finally, when it is possible to automatically extract
queries, the database can be hidden from the rest of the program. This chapter
describes how to store object metadata in the data source, as well as how to create
and manage queries to the data source. These design patterns are among the
PoEAA design patterns.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

Chapter 11: Web Presentation Design Patterns- One of the mostimportant changes
in applications in recent years is the penetration of web-based user interfaces.
These types of interfaces come with various advantages, including that the client
often does not need to install a special program to use them. The creation of web
applications is often accompanied by the generation of server-side codes. The
request is entered into the web server, and then the web server delivers the request
based on the content of the request to the web application or the corresponding
website. To separate the details related to the view from the data structure and
logic, you can benefit from the design patterns presented in this chapter. In this
chapter, the creation and handling of user interface requests are discussed, and it
is stated how you can prepare and implement the view and how you can manage
the requests in a suitable way. These design patterns are among the POEAA design
patterns.

Chapter 12: Distribution Design Patterns- One of the problems of implementing
communication between systems is observing the level of coarseness and fineness
of communication. This level should be such that both the effectiveness and
efficiency during the network are not disturbed, and the data structure delivered
to the client is the structure that is expected and suitable for the client. In this
chapter, design patterns that can be useful in building distributed software are
discussed. These design patterns are among the POEAA design patterns.

Chapter 13: Offline Concurrency Design Patterns- One of the most complicated
parts of software productionis dealing with topics related to concurrency. Whenever
several threads or processes have access to the same data, there is a possibility
of problems related to concurrency, so one should think about concurrency in
software production. Of course, there are different solutions at different levels
for working and managing concurrency in enterprise software applications. For
example, you can use transactions, internal features of relational databases, etc.,
for this purpose. Of course, this reason is not proof of the claim that concurrency
management can basically be blamed on these methods and tools. In this chapter,
design patterns that can be useful in solving these problems have been introduced.
These design patterns are among the POEAA design patterns.

Chapter 14: Session State Design Patterns- When we talk about transactions, we
often talk about system transactions and business transactions. This discussion
continues to the discussion of stateless or stateless sessions. Obviously, first, it
should be determined what is meant by Stateful or Stateless. When we look at an
object, this object consists of a series of data (status) and a series of behaviors. If

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xi

we assume that the object does not contain any data, then we have accepted that
the object in question does not have any data with it. If we bring this discussion
to enterprise software, the meaning of Stateless will be a state in which the server
does not keep any data of the request between two requests. If the server needs
to store data between two requests, then we will face stateful mode. This chapter
talks about how to manage user sessions. Some points have been raised regarding
stateless and stateful sessions. These design patterns are among the POEAA design
patterns.

Chapter 15: Base Design Patterns- When we are designing software, we need to
use different design patterns. To use these patterns, it is also necessary to use a
series of basic design patterns to finally provide a suitable and better design. In
fact, basic design patterns provide the foundation for designing and using other
patterns. In this chapter, a series of basic design patterns have been introduced,
and it has been shown how the use of these design patterns can be effective on the
use of other design patterns. These design patterns are among the POEAA design
patterns.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/g3mn07e

The code bundle for the book 1is also hosted on GitHub at
https://github.com/bpbpublications/. NET-7-Design-Patterns-In-Depth. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xiii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xiv

Table of Contents

1. Introduction to Design Patternsiiiininniniiininisisssscsiimessesssesssseses 1
INtrOAUCHON o 1
SHUCHUT ...ttt 1
ODJECHIVES ..ttt 2
What is software architecture ..o 2
What are design Patterns........cecueecurecuicuriereeereeenneeneeensesessesessesensesessesesesaens 6
GOF design Patternsccceueveeeueieveiiicieict e 7
Enterprise application and its design patterns...........cccoceevveveviecccinininncnne. 10

Different types of enterprise applicAtionscccovvvciviivevennniniirirennnn. 11
Design patterns and software design problems..........ccccoeeuviiereiinereinnnnen. 13
Effective factors in choosing a design patternoovvvvcvvvvcviiiiniiinnnnn, 17
INET oot 19
Introduction to object orientation in NET.........ccoovvvviinnieoiniiiiiiiiiiiinnns 21
Object orientation SOLID principles........ccoceveueccinieininiceiiininiecccieeieneneens 27
Single Responsibility PYIHCIPLEcccvvvvviviiniiiiiiiiiiiiciciciccc 28
Open[Close PYINCIPALc.ccvvuvivivieiciciciicicccicts et 30
Liskov Substitution Principlecccvviiviiiiiiiiiiiiiiciccciiiicsicccieinne 31
Interface segregation Principleccciviviiiivniiiniiiisiiciiieec, 34
Dependency Inversion Principleccocvveioivioiiiiiiiiiciiceeicieeeinne, 37
UML class diagrami......ccocecuiiinininiiriciiiniictccciieicsccsss s sesesessesnes 39
Class AIAGYANNcucuvvoviieiiiiiiiiiiiciciit s 40
CONCIUSION ottt 42

2. Creational Design Patterns 43
INtrOAUCHON ot 43
SHUCEUTE ...t s 43
ODJECHIVES ...ttt 44
Creational design pattern ..o 44
Factory method ... s 45

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

X0

ADStract faCtOry ...ttt 51
BUIlAeT ..ot 59
SINGLELON ..ttt 73
CONCIUSION ...ttt 80
3. Structural Design Patterns 81
INErOAUCHON ..ot 81
SHUCEUTE ...t s 81
ODJECHIVES ..ttt e 82
Structural design patterns ... 82
AAPLET oottt 83
BIid@e oot s 90
COMPOSILR ..ttt aea s 95
DeCOTAtOT ...ttt 102
Facade.....coviiiiiciii s 108
FIYWEIGIE .ottt 115
PrOXY ettt s 123
CONCIUSION ...ttt esas 130
4. Behavioral Design Patterns — Part L........ccceevvurvcrccncnvcncncnes 131
INtrOdUCHON ... 131
SHUCEULE ... 131
ODJECHIVES ...ttt 132
Behavioral design patterns ..., 132
Chain of 1eSPONSIDILILYcvveieiriiriiircic s 133
CoMMAN ... 138
MEAIALOTcevviiiciiiiiciic e 143
StAte.eeiic e 148
SHALEZY vttt s 153
Template MEthod ... s 158
CONCIUSION ...ttt esas 162

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xvi

5. Behavioral Design Patterns — Part IL.........uoeeeeereecncnnncnnnnns 163
INtrOdUCHON ... 163
SEUCEUTE ...t 163
ODJECHIVES ..etviitttet e 164
Behavioral design patterns ..., 164
INEOIPIOLET vttt 164
TEOTAtOL (et 170
MEMENLO ..ttt 178
ODSEIVET ...ttt s s e 185
VISIEOT vttt s 194
CONCIUSION ...ttt esas 201

6. Domain Logic Design Patterns 203
INtrOdUCHON ... 203
SEUCTUTE .ttt st b b 204
ODJECHIVES ...ttt 204
Domain logic design patterns. ... 204
Domain model.......oceiiiiiiiniiiiiniiieineeen et 209
Table MOAULE ..ot 213
SEIVICE LAY ..ottt 216
CONCIUSION ...ttt esas 221

7. Data Source Architecture Design Patterns 223
INtrOdUCHON ...t 223
SEUCTUTE .ttt ettt st e b et ene 224
ODJECHIVES ...ttt 224
Data source architecture design patternscccceececveinceincieccininennnn. 224
Table data gatewayccccevvveueieiiiiiicc e 225
Data Mapper ...t 237
CONCIUSION ...ttt esas 241

8. Object-Relational Behaviors Design Patterns 243
INErOAUCHON .ttt e 243

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

x0ii

SHUCEULE ... 243
ODJECHIVES ..evvititet e 244
Object-relational behaviors design patterns.........ccccececcuevviccirinccicnnincnnnen 244
Uit Of WOTK ..ot 244
Identity Map .ceveeeeiecctc e 250
Lazy 1oad.....coviiiiiiiiii s 255
Lazy initialization method ..o 256
GHOSE HEHNOA ...t 260
Value holder Method ...t 261
CONCIUSION ...ttt esas 263
9. Object-Relational Structures Design Patterns 265
INErOAUCHON .ot 265
SHUCEULE ... 266
ODJECHIVES ..etvteitttet e 266
Object-relational structures design patterns............cceeevvviviveviciincccecncnnnnns 266
Identity field ..o 267
Foreign Key Mappingccceeveueveieeieieininieieiniicsee e 272
Association table MapPINg.......ccuvuevrireiiiiininiicc e 278
Dependent Mappingccooeeeveeieieieieieieiiicieiciccet s 281
Embedded value........cccciiiiiiiiiiiiiiiiiiicci e 285
Serialized LOB.......ccooiiiiiiiiiiiiiiccciccssss e 290
Single table iNheritance. ... s 294
Class table INNETItANCEccvveueueiririecreiicieieiricicretceeieee et eaesese e eneneaes 299
Concrete table inheritance..........c.cocciiciinincciiiniiciccccceeaes 302
Inheritance MaPPerS.......c.ociiireiriicini s 305
CONCIUSION ...ttt esas 309
10. Object-Relational Metadata Mapping Design Patternscececeueueuceee 311
INtrOdUCHON ... 311
SHUCEULE ... 311
ODJECHIVES ...ttt 312
Object-relational metadata mapping design patterns..........cccceeeeeereverrnnnen. 312

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xviii

Metadata MapPingccceveeeueveiieieieieie e 312
QUETY ODJECL....veieiteiiictt s 319
REPOSIEOIY vttt 324
CONCIUSION ...ttt 330
11. Web Presentation Design Patterns 331
INErOAUCHON .ot 331
SHUCEULE ...t 332
ODJECHIVES ..etvteitttet e 332
Web presentation design patterns..........ccccceevverieiciciiinininincciececcnes 332
Model View CONtIOIIETcvviviiiiiiiiiiiiiiiiciciic e 333
Page cONIOLIErovviiiciic s 338
Front cONtroller ... 341
Template VIEWcucviieieiiiie e 344
TransfOrm VIEWcciiviiiiiiiiiiiiininicciic s s 351
TWO-SEEP VICW vttt 354
Application CONLIOLLETcucveiieereiiiiicieiet e 360
CONCIUSION ...ttt esas 368
12. Distribution Design Patterns........ciiririsenesrieesisisnssssessessssssssssesessssssssssesens 369
INtrOdUCHON ...t 369
SHUCEULE ... 369
ODJECHIVES ...ttt 370
Distribution design patterns ..o 370
Remote facade ... 370
Data transfer ObJect......cocviiiiiiicicic 376
CONCIUSION ...ttt esas 381
13. Offline Concurrency Design Patterns 383
INErOAUCHON .ot 383
SHUCEULE ... 384
ODJECHIVES ..etvieeiettett s 384
Offline concurrency design patterns.........cccovveciivinieieceiinenicccceeennes 384
Optimistic offline loCK.......coeveieiiiiiiiiiccc e 386

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

xix

Pessimistic Offline 10CKccueueerieueeinieeninieniiiiiiciecicrcctcce s ccseeaeenes 391
Coarse-grained 10CK.........cccueuiieieiniiiiiei s 398
IMPLiCit IOCK cvvivieiiieiicc e 407
CONCIUSION ...ttt 410
14. Session State Design Patterns..........ccvevnsecrercrceresnenens 411
INErOAUCHON .ot 411
SHUCEULE ...t 411
ODJECHIVES ..etvteitttet e 412
Session state design patterns.......ccooveecivivininiiiicc 412
Client sesSI0N StAte........covuruiucuiiiiiiiiicc e 412
Server SessiON State........ccceviviiiiiiiiiiiiiii 416
Database sessi0n State.......cccccieeiiiiieiciiiicicicc s 421
CONCIUSION ...ttt esas 428
15. Base Design Patternsccciivevennsniirinnesncsescscnennes 429
INErOAUCHON .ot 429
SHUCEULE ... 430
ODJECHIVES ..evvititet e 430
Base design patterns.. ... 430
GAtEWAY vvevriieieii s 431
MAPPET . 433
Layer SUPEItYPE ..ccceiiieiieicitctcet s 434
Separated INterface ..ot 436
REGISIIY oo 440
Value ObJeCt ... 443
MONEY ...t s 447
SPECIAl CASE vttt e 454
PIUGIN ot 457
SEIVICE StUD ..ottt 463
RECOTA Sttt 466
CONCIUSION ..ottt 468
Index 469-480

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

CHAPTER 1

Introduction to
Design Patterns

Introduction

One of the problems in understanding and using design patterns is the need for
proper insight into software architecture and the reason for using design patterns.
When this insight does not exist, design patterns will increase complexity. As they
are not used in their proper place, the use of design patterns will be considered a
waste of work. The reason for this is that the design patterns will not be able to have
a good impact on quality because they need to be placed in the right place.

In this chapter, an attempt has been made to briefly examine the software architecture
and design patterns. The enterprise applications architecture has been introduced,
and the relationship between software design problems and design patterns has
been clarified. In the rest of the chapter, a brief look at .NET, some object-oriented
principles, and the UML is given because, throughout the book, UML is used for
modeling, and the .NET framework and C# language are used for sample codes.

Structure

In this chapter, we will cover the following topics:
e What is software architecture

e What are design patterns

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

2 .NET 7 Design Patterns In-Depth

e GoF design patterns

e Enterprise application and its design patterns

o Different types of enterprise applications

e Design patterns and software design problems

o Effective factors in choosing a design pattern

e .NET

o Introduction to object orientation in .NET
e Object orientation SOLID principles
e UML class diagram

e Conclusion

Objectives

By the end of this chapter, you will be able to understand the role and place of design
patterns in software design, be familiar with software architecture, and evaluate
software design problems from different aspects. You are also expected to have a
good view of SOLID design principles at the end of this chapter and get to know
.NET and UML.

What is software architecture

Today, there are various definitions for software architecture. The system’s basic
structure, related to design decisions, must be made in the initial steps of software
production. The common feature in all these definitions is their importance.
Regardless of our attitude towards software architecture, we must always consider
that suitable architecture can be developed and maintained. Also, when we want
to look at the software from an architectural point of view, we must know what
elements and items are of great importance and always try to keep those important
elements and items in the best condition.

Consider software that needs to be better designed, and its essential elements must
be identified. During the production and maintenance of this software, we will need
help with various problems, including implementing changes, which will reduce
the speed of providing new features and increase the volume of software errors and
bugs. For example, pay attention to the following figure:

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

Introduction to Design Patterns 3

Figure 1.1: An example of software without proper architecture

In the preceding figure, full cells are the new features provided, and empty cells are
the design and architectural problems and defects.

If we consider one row of Figure 1.1, the following figure will be seen:

Figure 1.2: Sample feature delivery in software without proper architecture

We see how much time it takes to provide three different features. If the correct design
and architecture were adopted, new features would be delivered more quickly. The
same row could be presented as the following figure:

Figure 1.3: Sample feature delivery in software WITH proper architecture

The difference in length in the preceding two forms (Figure 1.2 and Figure 1.3) is
significant. This shows the importance of the right design and architecture in the
software. A high-quality infrastructure in the short term may indicate that production
speed decreases. This natural and high-quality infrastructure will show its effect in
the long run.

The following figure shows the relationship between Time and Output:

Output

Time
s High Quality Infrastructure | 0w Quality Infrastructure2

Figure 1.4: Time-Output Relation in Software Delivery

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

4 .NET 7 Design Patterns In-Depth

In Figure 1.4, at the beginning of the work, reaching the output with a low-quality
Infrastructure is faster than with a high-quality Infrastructure. However, with the
passage of time and the increase in the capabilities and complexity of the software,
the ability to maintain and apply software change is accelerated with better quality
infrastructure. This will reduce costs, increase user satisfaction, and improve
maintenance.

In this regard, Gerald Weinberg, the late American computer science scientist, has a
quote that says,

“If builders-built buildings the way programmers wrote programs, then the first woodpecker
that came along would destroy civilization.”

Weinberg tried to express the importance of infrastructure and software architecture.
According to Weinberg’s quote, paying attention to maintainability in the design
and implementation of software solutions is important. Today, various principles
can be useful in reaching a suitable infrastructure.

Some of these principles are as follows:

e Separation of concerns: Different software parts should be separated from
each other according to their work.

¢ Encapsulation: This is a way to restrict the direct access to some components
of an object, so users cannot access state values for all the variables of a
particular object. Encapsulation can hide data members, functions, or
methods associated with an instantiated class or object. Users will have no
idea how classes are implemented or stored, and the users will only know
that the values are being passed and initialized (Data Hiding). Also, it
would be easy to change and adapt to new requirements (ease of use) using
Encapsulation.

¢ Dependency inversion: High-level modules should not depend on low-
level modules, and the dependence between these two should only happen
through abstractions. To clarify the issue, consider the following example:

We have two different times in software production: compile and run
time. Suppose that in a dependency graph at compile-time, the following
relationship exists between classes A, B, and C:

A : B C

Figure 1.5: Relationship between A, B, and C in compile-time

As you can see, at compile-time, A is directly connected to B to call a method
in B, and the exact relationship is true for the relationship between B and

Kup ksigzke

http://helion.pl/page354U~rt/e_43sh_ebook

