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Preface

This book has tried to present important design patterns (including GoF design
patterns and Patterns of Enterprise Application Architecture) in software
production with a simple approach, along with practical examples using .NET 7.0
and C#.

This book will be useful for software engineers, programmers, and system
architects. Readers of this book are expected to have intermediate knowledge of
C#.NET programming language, .NET 7.0, and UML.

Practical and concrete examples have been used in writing this book. Each design
pattern begins with a short descriptive sentence and is then explained as a concrete
scenario. Finally, each design pattern's key points, advantages, disadvantages,
applicability, and related patterns are stated.

This book is divided into 15 chapters, including:

Chapter 1: Introduction to Design Patterns- In this chapter, an attempt has been
made to explain why design patterns are important and their role in software
architecture, and basically, what is the relationship between design patterns,
software design problems, and software architecture? In this chapter, various topics
such as Design Principles, including SOLID, KISS, DRY, etc., and Introduction to
.NET and UML are covered too.

Chapter 2: Creational Design Patterns- Creative design patterns, as the name
suggests, deal with the construction of objects and how to create instances. In C#
programming language, wherever an object is needed, the object can be created
using the “new” keyword along with the class name. However, there are situations
where it is necessary to hide the way the object is made from the user's view. In
this case, creative design patterns can be useful. In this chapter, creational design
patterns, one of the types of GoF design patterns, have been introduced, and it has
been said that these design patterns are useful for what issues.

Chapter 3: Structural Design Patterns- Structural design patterns deal with the
relationships between classes in the system. In fact, this category of design patterns
determines how different objects can form a more complex structure together. In
this chapter, structural design patterns, one of the types of GoF design patterns,
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have been introduced, and it has been said that these design patterns are useful
for what issues.

Chapter 4: Behavioral Design Patterns - Part I- This category of design patterns
deals with the behavior of objects and classes. In fact, the main goal and focal point
of this category of design patterns is to perform work between different objects
using different methods and different algorithms. In fact, in this category of design
patterns, not only objects and classes are discussed, but the relationship between
them is also discussed. In this chapter, the most popular and famous behavioral
design patterns, one of the types of GoF design patterns, have been introduced,
and it has been said that these design patterns are useful for what issues.

Chapter 5: Behavioral Design Patterns - Part II- In continuation of the previous
chapter, in this chapter, more complex and less used behavioral design patterns
are discussed, and it is shown how these design patterns can be useful in dealing
with the behavior of objects and classes. Although these patterns are less known
or less used, their use can make much more complex problems be solved in a very
simple way. In this chapter, less popular or famous behavioral design patterns, one
of the types of GoF design patterns, have been introduced, and it has been said
that these design patterns are useful for what issues.

Chapter 6: Domain Logic Design Patterns- To organize domain logic, Domain
Logic design patterns can be used. The choice of which design pattern to use
depends on the level of logical complexity that we want to implement. The
important thing here is to understand when logic is complex and when it is not!
Understanding this point is not an easy task, but by using domain experts, or more
experienced people, it is possible to obtain a better approximation. In this chapter,
it is said how to organize the logic of the domain. And in this way, what are the
design patterns that help us have a more appropriate and better design? These
design patterns are among the POEAA design patterns.

Chapter 7: Data Source Architectural Design Patterns- One of the challenges of
designing the data access layer is to implement how to communicate with the
data source. In this implementation, it is necessary to address issues such as how
to categorize SQL codes, how to manage the complexities of communicating with
the data of each domain, and the mismatch between the database structure and
the domain model. In this chapter, it has been said that in software architecture,
communication with data sources can be considered and implemented in a suitable
way. These design patterns are among the POEAA design patterns.
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Chapter 8: Object-Relational Behaviors Design Patterns- Among the other
challenges that exist when communicating with the database is paying attention
to behaviors. What is meant by behaviors is how the data should be fetched
from the database or how it should be stored in it. For example, suppose a lot
of data is fetched from the database, and some of them have changed. It will be
very important to answer the question of which of the data has changed or how
to store the changes again in the database, provided that the data consistency is
not disturbed. Another challenge is that when the Domain Model is used, most
of the models have relationships with other models, and reading a model will
lead to fetching all its relationships, which will again jeopardize the efficiency.
In this chapter, an attempt has been made to explain how to connect business to
data sources in a proper way. These design patterns are among the POEAA design
patterns.

Chapter 9: Object-Relational Structures Design Patterns- Another challenge in
mapping the domain to the database is how to map a record in the database to an
object. The next challenge is how to implement all types of relationships, including
one-to-one, one-to-many and many-to-many relationships. In the meantime, we
may face some data that cannot and should not be mapped to any table, and we
should think about this problem in our design. Finally, to implement the structure
of the database, relationships such as inheritance may be used. In this case, it
should be determined how this type of implementation should be mapped to the
tables in the database. In this chapter, an attempt has been made to explain how
to implement the data source structure in the software. These design patterns are
among the POEAA design patterns.

Chapter 10: Object-Relational Metadata Mapping Design Patterns- When we
are producing software, we need to implement the mapping between tables and
classes. For the software production process, this will be a process that contains a
significant amount of repetitive code, and this will increase the production time.
So, it will be necessary to stop writing duplicate codes and extract relationships
from metadata. When this challenge can be solved, then it will be possible to
generate queries automatically. Finally, when it is possible to automatically extract
queries, the database can be hidden from the rest of the program. This chapter
describes how to store object metadata in the data source, as well as how to create
and manage queries to the data source. These design patterns are among the
PoEAA design patterns.
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Chapter 11: Web Presentation Design Patterns- One of the mostimportant changes
in applications in recent years is the penetration of web-based user interfaces.
These types of interfaces come with various advantages, including that the client
often does not need to install a special program to use them. The creation of web
applications is often accompanied by the generation of server-side codes. The
request is entered into the web server, and then the web server delivers the request
based on the content of the request to the web application or the corresponding
website. To separate the details related to the view from the data structure and
logic, you can benefit from the design patterns presented in this chapter. In this
chapter, the creation and handling of user interface requests are discussed, and it
is stated how you can prepare and implement the view and how you can manage
the requests in a suitable way. These design patterns are among the POEAA design
patterns.

Chapter 12: Distribution Design Patterns- One of the problems of implementing
communication between systems is observing the level of coarseness and fineness
of communication. This level should be such that both the effectiveness and
efficiency during the network are not disturbed, and the data structure delivered
to the client is the structure that is expected and suitable for the client. In this
chapter, design patterns that can be useful in building distributed software are
discussed. These design patterns are among the POEAA design patterns.

Chapter 13: Offline Concurrency Design Patterns- One of the most complicated
parts of software productionis dealing with topics related to concurrency. Whenever
several threads or processes have access to the same data, there is a possibility
of problems related to concurrency, so one should think about concurrency in
software production. Of course, there are different solutions at different levels
for working and managing concurrency in enterprise software applications. For
example, you can use transactions, internal features of relational databases, etc.,
for this purpose. Of course, this reason is not proof of the claim that concurrency
management can basically be blamed on these methods and tools. In this chapter,
design patterns that can be useful in solving these problems have been introduced.
These design patterns are among the POEAA design patterns.

Chapter 14: Session State Design Patterns- When we talk about transactions, we
often talk about system transactions and business transactions. This discussion
continues to the discussion of stateless or stateless sessions. Obviously, first, it
should be determined what is meant by Stateful or Stateless. When we look at an
object, this object consists of a series of data (status) and a series of behaviors. If

Kup ksigzke


http://helion.pl/page354U~rt/e_43sh_ebook

xi

we assume that the object does not contain any data, then we have accepted that
the object in question does not have any data with it. If we bring this discussion
to enterprise software, the meaning of Stateless will be a state in which the server
does not keep any data of the request between two requests. If the server needs
to store data between two requests, then we will face stateful mode. This chapter
talks about how to manage user sessions. Some points have been raised regarding
stateless and stateful sessions. These design patterns are among the POEAA design
patterns.

Chapter 15: Base Design Patterns- When we are designing software, we need to
use different design patterns. To use these patterns, it is also necessary to use a
series of basic design patterns to finally provide a suitable and better design. In
fact, basic design patterns provide the foundation for designing and using other
patterns. In this chapter, a series of basic design patterns have been introduced,
and it has been shown how the use of these design patterns can be effective on the
use of other design patterns. These design patterns are among the POEAA design
patterns.
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CHAPTER 1

Introduction to
Design Patterns

Introduction

One of the problems in understanding and using design patterns is the need for
proper insight into software architecture and the reason for using design patterns.
When this insight does not exist, design patterns will increase complexity. As they
are not used in their proper place, the use of design patterns will be considered a
waste of work. The reason for this is that the design patterns will not be able to have
a good impact on quality because they need to be placed in the right place.

In this chapter, an attempt has been made to briefly examine the software architecture
and design patterns. The enterprise applications architecture has been introduced,
and the relationship between software design problems and design patterns has
been clarified. In the rest of the chapter, a brief look at .NET, some object-oriented
principles, and the UML is given because, throughout the book, UML is used for
modeling, and the .NET framework and C# language are used for sample codes.

Structure

In this chapter, we will cover the following topics:
e  What is software architecture

e  What are design patterns
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2 .NET 7 Design Patterns In-Depth

e GoF design patterns

e Enterprise application and its design patterns

o Different types of enterprise applications

e Design patterns and software design problems

o Effective factors in choosing a design pattern

e .NET

o Introduction to object orientation in .NET
e Object orientation SOLID principles
e UML class diagram

e Conclusion

Objectives

By the end of this chapter, you will be able to understand the role and place of design
patterns in software design, be familiar with software architecture, and evaluate
software design problems from different aspects. You are also expected to have a
good view of SOLID design principles at the end of this chapter and get to know
.NET and UML.

What is software architecture

Today, there are various definitions for software architecture. The system’s basic
structure, related to design decisions, must be made in the initial steps of software
production. The common feature in all these definitions is their importance.
Regardless of our attitude towards software architecture, we must always consider
that suitable architecture can be developed and maintained. Also, when we want
to look at the software from an architectural point of view, we must know what
elements and items are of great importance and always try to keep those important
elements and items in the best condition.

Consider software that needs to be better designed, and its essential elements must
be identified. During the production and maintenance of this software, we will need
help with various problems, including implementing changes, which will reduce
the speed of providing new features and increase the volume of software errors and
bugs. For example, pay attention to the following figure:
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Figure 1.1: An example of software without proper architecture

In the preceding figure, full cells are the new features provided, and empty cells are
the design and architectural problems and defects.

If we consider one row of Figure 1.1, the following figure will be seen:

Figure 1.2: Sample feature delivery in software without proper architecture

We see how much time it takes to provide three different features. If the correct design
and architecture were adopted, new features would be delivered more quickly. The
same row could be presented as the following figure:

Figure 1.3: Sample feature delivery in software WITH proper architecture

The difference in length in the preceding two forms (Figure 1.2 and Figure 1.3) is
significant. This shows the importance of the right design and architecture in the
software. A high-quality infrastructure in the short term may indicate that production
speed decreases. This natural and high-quality infrastructure will show its effect in
the long run.

The following figure shows the relationship between Time and Output:

Output

Time
s High Quality Infrastructure | 0w Quality Infrastructure2

Figure 1.4: Time-Output Relation in Software Delivery
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In Figure 1.4, at the beginning of the work, reaching the output with a low-quality
Infrastructure is faster than with a high-quality Infrastructure. However, with the
passage of time and the increase in the capabilities and complexity of the software,
the ability to maintain and apply software change is accelerated with better quality
infrastructure. This will reduce costs, increase user satisfaction, and improve
maintenance.

In this regard, Gerald Weinberg, the late American computer science scientist, has a
quote that says,

“If builders-built buildings the way programmers wrote programs, then the first woodpecker
that came along would destroy civilization.”

Weinberg tried to express the importance of infrastructure and software architecture.
According to Weinberg’s quote, paying attention to maintainability in the design
and implementation of software solutions is important. Today, various principles
can be useful in reaching a suitable infrastructure.

Some of these principles are as follows:

e Separation of concerns: Different software parts should be separated from
each other according to their work.

¢ Encapsulation: This is a way to restrict the direct access to some components
of an object, so users cannot access state values for all the variables of a
particular object. Encapsulation can hide data members, functions, or
methods associated with an instantiated class or object. Users will have no
idea how classes are implemented or stored, and the users will only know
that the values are being passed and initialized (Data Hiding). Also, it
would be easy to change and adapt to new requirements (ease of use) using
Encapsulation.

¢ Dependency inversion: High-level modules should not depend on low-
level modules, and the dependence between these two should only happen
through abstractions. To clarify the issue, consider the following example:

We have two different times in software production: compile and run
time. Suppose that in a dependency graph at compile-time, the following
relationship exists between classes A, B, and C:

A : B C

Figure 1.5: Relationship between A, B, and C in compile-time

As you can see, at compile-time, A is directly connected to B to call a method
in B, and the exact relationship is true for the relationship between B and
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