Advanced Machine Learning

Fundamentals and algorithms

Dr. Amit Kumar Tyagi

Dr. Khushboo Tripathi

Dr. Avinash Kumar Sharma

First Edition 2024

Copyright © BPB Publications, India

ISBN: 978-93-55516-343

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author's and publisher's knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete BPB Publications Catalogue Scan the QR Code:

www.bpbonline.com

Dedicated to

My Mom **Anita Tyagi**, Dad **Devraj Singh Tyagi**My beloved daughter – **Vernika Tyagi**And My beloved Son- **Apoorv Tyagi**

Book Technical Reviewers

Dr. Aswani Kumar Cherukuri (Professor, Vellore Institute of Technology, Tamil Nadu, India)

My Mentors and Guides

Dr. G Aghila (Director, National Institute of Technology, Tiruchirappalli)Dr. N Sreenath (Professor, Puducherry Technological University, Puducherry)

My Product and Competency Team

My Investors and Partners in Technology

Publishing Team at BPB

- Dr. Amit Kumar Tyagi

About the Authors

- **Dr. Amit Kumar Tyagi** is working as an Assistant Professor, at the National Institute of Fashion Technology, 110016, New Delhi, India. Previously, he has worked as Assistant Professor (Senior Grade 2), and Senior Researcher at Vellore Institute of Technology (VIT), Chennai Campus, 600127, Chennai, Tamilandu, India for the period of 2019-2022. He received his Ph.D. Degree (Full-Time) in 2018 from Pondicherry Central University, 605014, Puducherry, India. About his academic experience, he joined the Lord Krishna College of Engineering, Ghaziabad (LKCE) for the periods of 2009-2010, and 2012-2013. He was an Assistant Professor and Head of Research at Lingaya's Vidyapeeth (formerly known as Lingaya's University), Faridabad, Haryana, India, for the period of 2018-2019. His supervision experience includes more than 10 Master dissertations and one PhD thesis. He has contributed to several projects such as AARIN and P3- Block to address some of the open issues related to privacy breaches in Vehicular Applications (such as Parking) and Medical Cyber-Physical Systems (MCPS). He has published over 200 papers in refereed high-impact journals, conferences, and books, and some of his articles have been awarded as best paper awards. Also, he has filed more than 25 patents (Nationally and Internationally) in the areas of Deep Learning, the Internet of Things, Cyber-Physical Systems, and Computer Vision. He has edited more than 30 books for IET, Elsevier, Springer, CRC Press, etc. Also, he has authored 4 Books on Intelligent Transportation Systems, Vehicular Ad-hoc Networks, Machine Learning, and the Internet of Things, with IET UK, Springer Germany, and BPB India publisher. He is a Winner of the Faculty Research Award for the Year of 2020, 2021, and 2022 (three consecutive years) given by Vellore Institute of Technology, Chennai, India. Recently, he has been awarded the best paper award for a paper titled A Novel Feature Extractor Based on the Modified Approach of Histogram of Oriented Gradient, in ICCSA 2020, Italy (Europe). His current research focuses on Next Generation Machine Based Communications, Blockchain Technology, Smart and Secure Computing, and Privacy. He is a regular member of the ACM, IEEE, MIRLabs, Ramanujan Mathematical Society, Cryptology Research Society, Universal Scientific Education and Research Network, CSI, and ISTE.
- Dr. Khushboo Tripathi received her Ph. D. degree in computer science from the University of Allahabad, Prayagraj. She has completed her M. Tech in Computer Science and Engineering from KNIT Sultanpur, M. Sc, and B.Sc. from the University

of Allahabad, Prayagraj. She has more than seventeen years of experience in teaching and research. Her area of interest is Wireless Ad Hoc Networks, particularly, MANET and SENSOR networks, Secure Routing Protocols, SDN, Advanced Networking, Network and Cyber Security, and Artificial Intelligence. She has supervised many Ph.D., M. Tech., MCA, and B. Tech students in their thesis and projects. She has published various papers, and book chapters in International and National reputed journals and conferences in India and Abroad. She is the editor of the book Concepts of Artificial Intelligence and its Application in Modern Healthcare Systems. She is an editor, senior member, and reviewer of many professional organizations. Currently, she is serving as an Associate Professor in the Department of Computer Science and Engineering at Amity University Haryana Gurgaon.

• Dr. Avinash Kumar Sharma is currently working as an Associate Professor at the Department of Computer Science & Engineering, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida. Dr. Avinash Kumar Sharma has completed his Ph.D at Uttarakhand Technical University, Dehradun (A State Govt. University) in Cloud Computing. His research areas are Cloud Computing, Machine Learning, Smart Agriculture, and Artificial Intelligence. He has more than 17 years of teaching experience. He has published about 30 research articles in national/international conferences, journals, and book chapters. Dr. Avinash Kumar Sharma edited 04 books with IGI Global. He has also published 03 patents, including 01 design patent.

About the Reviewers

- Ankit Virmani is an ethical AI and data leader with over a decade of progressive work experience in designing scalable data and Machine Learning platforms. He writes for Forbes being o the Forbes Technology Council and regularly speaks at national and international conferences.
 - Ankit has worked for companies like Google, Amazon, CVS, DEloitte and Infosys and is passionate about how AI and data can change the society for the better.
- * Komal Lamba is a gold-medalist data scientist with a strong background in engineering, statistics, and Machine Learning. Her expertise includes audio analysis, NLP, deep learning, graph neural networks, and user recommendations, with a focus on using GDS-neo4j for feed recommendations and ranking. Komal excels in connecting ideas across disciplines and delivering high-performing AI solutions to solve business problems. She is skilled at communicating complex concepts to non-technical stakeholders.

Komal is proficient in Python (scikit-learn, NumPy, SciPy, Pandas, and Librosa), TensorFlow, and Excel, and knows SQL. During her postgraduate studies, Komal took on leadership roles, mentoring interns, coordinating large-scale research events, and leading journal clubs.

Currently, she is working as a Data Scientist at Cygnet One in Ahmedabad, Gujarat, where she works on projects involving Traditional AI and GenAI. She continues to drive innovative, data-driven solutions at Cygnet Infotech as a Data Scientist.

Acknowledgement

There are a few people we want to thank for the continued and ongoing support they have given to us during the writing of this book. First of all, we would like to extend our gratitude to our family members, friends, and supervisors, who stood with us as an advisor in completing this book. Also, we would like to thank our almighty God, who made us write this book. We would also like to thank BPB Publishers (who have provided their continuous support during post COVID-19 Pandemic) and our colleagues with whom we have worked together inside the college/university and others outside premises who have provided their continuous support towards completing this book on a hot topic like Machine Learning.

Also, we would like to thank our Respected Madam, Prof. G Aghila, and our Respected Sir Prof. N Sreenath for giving their valuable inputs and helping us in completing this book.

Finally, we forward our thanks to BPB Publications for giving us this opportunity to write our second book with them.

Preface

In the past years, we have seen a drastic change in the use of smart devices in several sectors. These smart devices produce huge data, called big data, which is used to learn the footprint/ habits of customers/ consumers. Today's companies use this data to launch a new product, understand market needs and scenarios, and take action accordingly. Today, Machine Learning has become a hot topic in data analysis. For this, we have written this book. This book begins with an overview of the fundamental concepts and principles of Machine Learning (which also discusses various types of learning algorithms, such as supervised, unsupervised, and reinforcement learning, and explains the underlying mathematical foundations). Then, we discuss several supervised Machine Learning algorithms, like linear regression, logistic regression, etc., in detail. Further, this book discusses feature engineering, which plays an essential role in enhancing the performance of Machine Learning models. The book discusses different methods for feature extraction, transformation, and selection, enabling readers to effectively pre-process their data and derive informative features. This book also covers various evaluation metrics, including accuracy, precision, recall, and F1-score, to evaluate the learning models.

It also presents techniques like cross-validation and grid search for model selection and hyperparameter tuning. This book also discusses popular ensemble techniques, such as bagging, boosting, and stacking, and elucidates their strengths and limitations. It also discusses ensemble pruning and model combination strategies. The book examines several unsupervised Machine Learning algorithms like clustering algorithms, such as k-means, hierarchical clustering, and density-based methods. Further, it also explores dimensionality reduction techniques like **Principal Component Analysis** (**PCA**) and t-SNE. In the last, applications of learning algorithms have been explained in detail. In the end, this book introduces deep neural networks, including Convolutional Neural Networks (CNNs) for image analysis and **Recurrent Neural Networks** (**RNNs**) for sequence data. It covers advanced topics like transfer learning, **Generative Adversarial Networks** (**GANs**), and deep reinforcement learning. In summary, we provide our readers with the knowledge and skills that are necessary to tackle complex Machine Learning problems. We hope that this book will be helpful to those who are eager to learn more.

Over the 17 chapters, you will learn the following topics:

Chapter 1: Introduction to Machine Learning - This chapter introduces Machine Learning and its types with an explanation of its importance in different sectors / applications.

Chapter 2: Statistical Analysis - This chapter introduces essential parameters, or statistical analysis parameters, that are used to evaluate the learning models.

Chapter 3: Liner Regression - This chapter introduces linear regression and its explanation in different programming languages with a real-world example.

Chapter 4: Logistic Regression - This chapter introduces logistic regression and its explanation in different programming languages with a real-world example.

Chapter 5: Decision Trees - This chapter introduces the decision tree and its explanation in different programming languages with a real-world example.

Chpter 6: Random Forest - This chapter introduces the random forest and its explanation in different programming languages with a real-world example.

Chapter 7: Rule-Based Classifiers - This chapter introduces rule-based classifiers and their explanation in different programming languages with a real-world example.

Chapter 8: Naïve Bayesian Classifiers - This chapter introduces the naïve Bayes classifier and its explanation in different programming languages with a real-world example.

Chapter 9: K-Nearest neighbors Classifiers - This chapter introduces k-NN and its explanation in different programming languages with a real-world example.

Chapter 10: Support Vector Machine - This chapter introduces SVM and its explanation in different programming languages with a real-world example.

Chapter 11: K-Means Clustering - This chapter introduces k-means clustering (with its importance in different sectors) and its explanation in different programming languages (with a real-world example).

Chapter 12: Dimensionality Reduction - This chapter introduces DR, Principal Component Analysis (PCA) (with its use as a statistical tool), and its explanation in different programming languages with a real-world example.

Chapter 13: Association Rules Mining and FP Growth - This chapter introduces ARM and FP growth (with its importance in different/ useful applications) and its explanation in different programming languages with a real-world example.

Chapter 14: Reinforcement Learning - This chapter introduces **Reinforcement Learning** (with its importance in different sectors) and its explanation in different programming languages with a real-world example.

Chapter 15: Applications of ML Algorithms - This chapter introduces different applications of Machine Learning in detail.

Chapter 16: Applications of Deep Learning - This chapter introduces different applications of deep learning in detail.

Chapter 17: Advanced Topics and Future Directions - This chapter introduces several topics (advanced topics for the future) towards making the next-generation society more secure and safer.

Code Bundle and Coloured Images

Please follow the link to download the *Code Bundle* and the *Coloured Images* of the book:

https://rebrand.ly/zb5hljw

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Advanced-Machine-Learning.

In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at:

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications' Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline. com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at:

business@bpbonline.com for more details.

At **www.bpbonline.com**, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at **business@bpbonline.com** with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit **www.bpbonline.com**. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit **www.bpbonline.com**.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

1. Introduction to Machine Learning	1
Introduction	1
Structure	2
Objective	2
Overview of AI	3
Artificial narrow intelligence	4
Artificial general intelligence	4
Artificial superintelligence	4
Machine Learning	8
Preliminaries required to understand	9
Machine Learning: Where several disciplines meet together	10
Supervised learning	12
Applications	14
Unsupervised learning	17
Applications	18
Semi-supervised learning	20
Applications	21
Reinforcement learning	24
Difference between semi-supervised learning and reinforcement learning	26
Validation and evaluation of Machine Learning techniques	27
Applications of Machine Learning algorithms in today's smart era	29
Automatic recognition of handwritten postal codes	30
Computer-aided diagnosis	31
Computer vision	32
Role of Machine Learning in driverless cars	34
Role of Machine Learning in face recognition and security	35
Role of Machine Learning in speech recognition	36
Role of Machine Learning in text mining	37

	Where text and image data can be used together	38
	Role of Machine Learning in energy saving	38
	The present and the future of Machine Learning	40
	Machine Learning future as thinking machines	41
	Smart machines	42
	Automated and intelligent machine	44
	Automated intelligent and interactive machine	45
	Deep blue	46
	IBM's Watson	47
	Google now	48
	Apple's Siri	48
	Microsoft's cortana	49
	ChatGPT	50
	Computer vision vs. Artificial Intelligence vs. expert system vs. robotics	51
	Conclusion	52
	Points to remember	53
	Questions	53
	Key terms	54
	References	54
2.	Statistical Analysis	55
	Introduction	55
	Structure	55
	Objectives	56
	Introduction to statistical analysis	57
	Gaussian mixture model	58
	Learning the concept by example	59
	Hidden markov model	60
	Example	61
	Linear discriminant analysis	63
	Example	
	MATI AR code	65

	Conditional probability	66
	Mean, mode and median	68
	Correlation factor	69
	Information gain and information Loss	70
	Bias, variance and co-variance	72
	Metrices	73
	FP measure	73
	Confusion matrix	73
	The area under the ROC curve	74
	Recall	74
	Learning the concept by example	74
	Gaussian distribution	74
	Example	75
	Skew distribution	76
	Standard deviation	78
	Role of standard deviation, conditional probability, gaussian distribution, skew distribution in ML	80
	Type of data	
	z-test, t-tests, ANOVA and chi-square tests	
	Z-Test	
	T-tests	
	ANOVA	83
	Chi-square test	84
	T-Test versus Chi-Square	85
	Conclusion	
	Questions	86
	Key terms	87
	References	
3.	Linear Regression	89
	Introduction	89
	Structure	89

	Objectives	90
	Introduction to linear regression	90
	Linear regression	91
	Entropy	93
	Understanding the concept of several bits	95
	Mean squared error	96
	Learning the concept by example	97
	Benefits and limitations of linear regression	. 105
	Open issues and challenges with linear regression	. 107
	Future possibilities	. 108
	Conclusion	. 110
	Questions	. 110
	Key terms	111
	References	. 112
4.	Logistic Regression	. 113
	Introduction	. 113
	Structure	. 113
	Objectives	. 113
	Introduction to logistic regression	. 114
	Metrices	. 116
	Accuracy	. 116
	F1 score	. 117
	ROC-AUC	. 117
	PR-AUC	. 118
	Learning the concept by example	. 118
	In language MATLAB	. 119
	In language R	. 120
	Python	
	Benefits and limitations with logistic regression	
	Issues and challenges with logistic regression	
	Future possibilities and opportunities	

	Conclusion	. 129
	Key terms	. 130
	Questions	. 130
	References	. 131
5.	Decision Trees	. 133
	Introduction	. 133
	Structure	. 133
	Objectives	. 134
	Introduction to decision trees	. 134
	Applications of decision trees	. 137
	Entropy in decision tree	. 138
	Attribute selection measure	. 139
	Information Gain of ID3	. 140
	The problem with information gain	. 141
	Implementation in MATLAB	. 142
	The gain ratio of C4.5 and C5.0	. 142
	Implementation of the concept by example	. 142
	Benefits and limitations of decision tree	. 145
	Issues and challenges with decision tree	. 147
	Future possibilities and opportunities	. 148
	Conclusion	. 149
	Key terms	. 150
	Questions	. 150
	References	. 151
6.	Random Forest	. 153
	Introduction	. 153
	Structure	. 153
	Objectives	. 154
	Introduction to Random Forest	. 154
	Applications of Random Forest	. 158
	Decision Tree versus Pandam Forest	150

	Underfitting versus overfitting	162
	Bagging versus boosting	163
	Bagging example	164
	Boosting example	165
	Implementation and learning the concept by example	166
	In MATLAB	167
	In R language	168
	In Python language	169
	Benefits and limitations of Random Forest	170
	Issues and challenges with Random Forest	171
	Future possibilities and opportunities for Random Forest	173
	Conclusion	174
	Questions	175
	Key term	176
	References	176
7.	Rule-Based Classifiers	177
	Introduction	177
	Structure	177
	Objectives	178
	Introduction to rule-based classifiers	178
	Sequential covering algorithm	180
	Algorithm	181
	Visualization	182
	Ripper	182
	Algorithm	182
	Understanding the rule growing process	183
	Information gain	184
	Pruning	185
	Optimization	186
	Learning the concept by example	187
	MATLAB simulator	. 187

	R language	. 188
	Python programming languages	. 190
	Benefits and limitations of Rule based classifier	. 191
	Issues and challenges with Rule based classifier	. 193
	Future possibilities and opportunities	. 195
	Conclusion	. 196
	Key terms	. 197
	References	. 197
	Questions	. 198
8.	Naïve Bayesian Classifier	. 201
	Introduction	. 201
	Structure	. 201
	Objectives	. 202
	Introduction to Naïve Bayes Classifier	. 202
	Example	. 203
	Prior probability	. 205
	Posterior probability	. 205
	Laplace estimator	. 207
	Likelihood	. 208
	Learning the concept by example	. 210
	Benefits and limitations with Naïve Bayesian Classifier	. 213
	Issues and challenges with Naïve Bayesian Classifier	. 215
	Future possibilities and opportunities	. 217
	Conclusion	. 218
	Questions	. 218
	Key terms	. 220
	References	. 220
9.	K-Nearest neighbors Classifiers	. 221
	Introduction	. 221
	Structure	. 221
	Objectives	. 222

	Introduction to k-nearest neighbors	. 222
	Example of k-nearest neighbors	223
	Implementation of k-nearest neighbors in different languages	. 225
	In MATLAB Simulator	. 225
	In language R	. 227
	In language Python	. 228
	Benefits and limitations with k-nearest neighbors classifiers	. 229
	Issues and challenges with k-NN classifiers	. 230
	Future possibilities/ opportunities towards k-NN classifiers	231
	Conclusion	233
	Questions	234
	Key terms	. 235
	References	. 235
10	Constant Western Marking	007
10.	Support Vector Machine	
	Introduction	
	Structure	
	Objectives	
	Overview	. 238
	Defining support vector machine	240
	Design of the SVM	241
	The case of nonlinear kernel	242
	Learning the concept by example	243
	SVM implementation in MATLAB	243
	In 'R' Language	244
	In Python language	249
	Benefits and limitations of support vector machine	. 251
	Issues and challenges	253
	Future possibilities and opportunities	254
	Conclusion	256
	Keywords	256
	References	
	Ouestions	. 257

11.	K-Means Clustering.	259
	Introduction	259
	Structure	259
	Objectives	260
	Overview of clustering	260
	Types of clusters	261
	Key-process	263
	The k-means clustering algorithm	264
	Learning the concept by example	265
	K-means clustering in MATLAB	265
	In the language 'R'	266
	Benefits and limitations of k-means algorithm	270
	Limitations with k-means algorithm	272
	Future possibilities toward the k-means algorithm	273
	Conclusion	275
	Keywords	275
	References	275
	Questions	276
12.	Dimensionality Reduction	279
	Introduction	279
	Structure	279
	Objectives	280
	Basic keys	281
	Introduction to principal component analysis	282
	Explanation of the problem	283
	The idea behind the principal component analysis	285
	The SVD and dimensionality reduction	286
	The PCA implementation	287
	Number of principal components for PCA	288
	Data reconstruction error in PCA	289
	The PCA implementation in MATLAB	290

	PCA methods implementation in Weka	292
	Polymorphic worm detection using PCA	293
	Introduction to SEA, MKMP, and PCA	294
	Motivation towards string matching	294
	The KMP Algorithm	296
	A modified Principal Component Analysis	298
	Clustering method for polymorphic worms	299
	Signature generation algorithms Pseudo-Codes	301
	Signature generation process	301
	Learning the PCA concept by example	303
	MATLAB	303
	R language	304
	Python language	305
	Benefits and limitations with dimensionality reduction and PCA	306
	Challenges with dimensionality reduction and PCA	308
	Future possibilities towards dimensionality reduction and PCA	310
	Conclusion	311
	Keywords	312
	References	312
	Questions	313
13.	Association Rules Mining and FP Growth	315
	Introduction	315
	Structure	315
	Objective	316
	An outline	316
	Learning the concept by example	322
	In MATLAB	322
	In R language	325
	In Python language	326
	Benefits and limitations with ARM and FP growth algorithm	327
	Issues with ARM and FP growth algorithm	329

	Future possibilities with ARM and FP growth algorithm	330
	Conclusion	332
	Keywords	332
	References	333
	Questions	333
14.	. Reinforcement Learning	335
	Introduction	335
	Structure	335
	Objectives	336
	Key features	336
	Deep learning	337
	Deep learning vs Machine Learning	340
	Algorithms	341
	Neural network	341
	Perceptron neural network	342
	MATLAB implementation of the perceptron training and testing algorithm	ıs 343
	Multilayer perceptron networks	344
	The backpropagation algorithm	346
	ANN	347
	CNN	350
	RNN	352
	LSTM	354
	Other popular reinforcement algorithms	356
	Q-learning	356
	SARSA	358
	DQN	361
	DDPG	363
	Simulator used	365
	Tensor flow	365
	PyTorch	367
	Learning the neural network concept by example	368

	Benefits and limitations of RL algorithm	372
	Challenges with a RL algorithm	374
	Future opportunities for a RL algorithm	376
	Conclusion	377
	Keywords	378
	References	378
	Questions	379
15.	Applications of ML Algorithms	381
	Introduction	381
	Structure	381
	Objective	382
	Key features of ML	383
	Agriculture	384
	Bio-medical	385
	Healthcare	387
	Education	388
	Retail	390
	Transportation	391
	Supply chain management and logistics	
	Churn prediction	
	Manufacturing	394
	Media and entertainment	396
	Weather prediction	397
	Financial sector	398
	Recommender systems	400
	Textile industry	401
	Energy sector	402
	Benefits, open issues and critical challenges	404
	Future research opportunities towards ML techniques	406
	Conclusion	407
	Keywords	407
	References	408

16.	Applications of Deep Learning	409
	Introduction	409
	Structure	409
	Objectives	410
	Basic fundamentals	410
	Computer vision	412
	Natural language processing	415
	Sentimental analysis	418
	Information gained	419
	Customer buying behavior	421
	Lesson learned	422
	Recommendation systems	424
	Information acquired	425
	Medical diagnostics	427
	Understanding	428
	Autonomous vehicles	430
	Fraud detection	433
	Financial forecasting	434
	Drug discovery	435
	Benefits, open issues and critical challenges	437
	Future research opportunities for DL techniques	438
	Conclusion	440
	Keywords	440
	References	440
17.	Advance Topics and Future Directions	443
	Introduction	443
	Structure	443
	Objectives	444
	Next-generation machine-based communications	444
	Blockchain technology	446
	Example 1	117

Digital twin technology	449
Example 2	450
Internet of Things	453
Example 3	454
Cloud, fog and edge computing	456
Example 4	457
Dew computing	459
Example 5	460
Parallel computing	461
Example 6	463
Soft computing	464
Example 7	465
Grid computing	466
Example 8	467
Quantum computing	470
Example 9	471
6G	472
Example 10	474
6G vs. 5G	475
Software-defined networking	476
Example 11	477
Popular sectors for the future	480
Popular applications for the future	481
Conclusion	482
Keywords	483
References	483
To Jav	405 404

CHAPTER 1 Introduction to Machine Learning

Introduction

This book will discuss Machine Learning (ML) and its role in the smart era/ many applications with a detailed explanation (with the implementation of code). In general, ML is a subset of Artificial Intelligence (AI) that focuses on developing algorithms and models that allow computers to learn from and make predictions or decisions based on data without being explicitly programmed. In this smart era, Machine Learning has become a fundamental technology with a wide range of applications that are transforming industries and our daily lives. Using ML techniques, we learn from Data. ML algorithms are designed to analyze and find patterns within large datasets, allowing computers to make predictions or take actions based on that data. Now there are a few types of Machine Learning, added as:

Supervised learning, unsupervised learning, reinforcement learning, semi-supervised learning and self-supervised learning.

We will also learn key algorithms and models, for example, linear regression and logistic regression, decision trees and random forests, neural networks and deep learning.

We will understand the use of Machine Learning in the smart era, personalized recommendations, healthcare, autonomous vehicles, natural language processing (NLP), finance, manufacturing and industry 4.0, energy efficiency, smart cities, environmental monitoring, security, and so on.

Machine Learning has the potential to transform industries and improve the efficiency and convenience of our daily lives in various ways. As data continues to grow and as algorithms become more important, Machine Learning's impact in the smart era is expected to expand even further. This book will cover all such types of ML algorithms and will explain their use in different sectors in the concluding chapters.

Structure

In this chapter, we will discuss the following topics:

- Overview of AI
- Machine Learning
- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Applications of Machine Learning algorithms in today's smart era
- Where text and image data can be used together
- The present and the future of Machine Learning
- Computer vision vs Artificial Intelligence vs expert system vs robotics

Objective

The objective of this chapter is to provide readers and future researchers with a fundamental understanding of ML. This introductory chapter serves as a stepping stone for those who may be new to the subject or in need of a refresher. It covers various objectives, including defining Machine Learning, explaining its types and applications, offering a historical context, and providing motivation for its importance in multiple domains such as healthcare, finance, and autonomous vehicles.

Basic concepts of Machine Learning, including data, features, labels, algorithms, models, and predictions, are explained. The distinction between supervised and unsupervised learning is clarified. The pivotal role of data in Machine Learning is emphasized, stressing the importance of high-quality, diverse, and well-labeled data for training effective models.

The chapter outlines the typical workflow of a Machine Learning project, encompassing data collection, data preprocessing, model training, evaluation, and deployment. It also explains about the challenges and limitations associated with Machine Learning, covering issues like overfitting, bias, data quality, and ethical issues.

Additionally, essential terminologies related to Machine Learning, such as computer vision and robotics, are introduced. The chapter aims to prevent readers from conflating these terms and encourages them to distinguish between various concepts they might encounter throughout the book.

In last, a few self-assessment questions are included at the end of the chapter. These questions help readers gauge their grasp of the introductory concepts presented.

Overview of AI

Today AI's rapid growth and powerful capabilities have made people paranoid about the inevitability and proximity of AI growth. Also, the transformation brought about by AI in different industries has made business leaders and the mainstream public think that we are close to achieving the peak of AI research and maxing out AI's potential. However, understanding the types of AI that are possible and the types that exist now will give a clearer picture of existing AI capabilities and the long road ahead for AI research. Since AI research purports to make machines emulate human-like functioning, the degree to which an AI system can replicate human capabilities is used as the criterion for determining the types of AI. Thus, depending on how a machine compares to humans in terms of versatility and performance, AI can be classified as one among the multiple types of AI. Under such a system, an AI that can perform more human-like functions with equivalent levels of proficiency will be considered a more evolved type of AI. In contrast, an AI that has limited functionality and performance would be considered a simple one.

Based on this criterion, there are two ways in which AI is generally classified. One type is based on classifying AI and AI-enabled machines based on their likeness to the human mind and their ability to *think* and perhaps even feel like humans. According to this system of classification, there are four types of AI or AI-based systems: reactive machines, limited memory machines, theory of mind, and self-aware AI, as illustrated in the following figure:

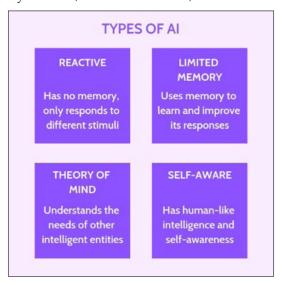


Figure 1.1: Types of Artificial Intelligence

Now, let us look at some examples of each:

- Reactive machines: Beat at chess by IBM's supercomputer, and Netflix recommendations.
- **Limited memory machines**: Self-driving cars.
- **Theory of mind:** In the future, theory of mind AI machines could be able to understand intentions and predict behavior, as if to simulate human relationships.
- **Self-awareness:** The final evolution of AI would be to design systems that have a sense of self, a conscious understanding of their existence. However, this type of AI does not exist yet.

The alternate system of classification that is more generally used in tech parlance is the classification of the technology into Artificial Narrow Intelligence (ANI), Artificial General Intelligence (AGI), and Artificial Superintelligence (ASI). Let us understand each one by one:

Artificial narrow intelligence

This type of Artificial Intelligence represents all the existing AI, including even the most complicated and capable AI that has ever been created to date. Artificial narrow intelligence refers to AI systems that can only perform a specific task autonomously using human-like capabilities. These machines can do nothing more than what they are programmed to do and thus have a very limited or narrow range of competencies. According to the system of classification, these systems correspond to all the reactive and limited memory AI. Even the most complex AI that uses Machine Learning and deep learning to teach itself falls under ANI.

Artificial general intelligence

Artificial general intelligence is the ability of an AI agent to learn, perceive, understand, and function completely like a human being. These systems will be able to independently build multiple competencies and form connections and generalizations across domains, massively cutting down on the time needed for training. This will make AI systems as capable as humans by replicating our multi-functional capabilities.

Artificial superintelligence

The development of artificial superintelligence will probably mark the maximum use of AI research, as AGI will become by far the most capable form of intelligence on earth. ASI, in addition to replicating the multi-faceted intelligence of human beings, will be exceedingly better at everything they do because of overwhelmingly greater memory, faster data processing and analysis, and decision-making capabilities. The development of AGI and ASI will lead to a scenario/application most popularly referred to as the singularity. And while the potential of having such powerful machines at our disposal seems appealing, these machines may also threaten our existence or, at the very least, our way of life. Note that AI refers to the development of intelligent machines or systems that can perform tasks that typically require human intelligence. It involves the creation of algorithms and models that enable machines to perceive and understand their environment, reason, learn, and make decisions. AI encompasses various techniques, including ML and DL, as well as areas such as natural language processing, computer vision, expert systems, and robotics. Let us briefly understand:

- **Machine Learning:** ML is a subset of AI that focuses on the development of algorithms and models that allow computer systems to automatically learn from data and improve their performance without explicit programming. ML algorithms can identify patterns, extract information, and make predictions or decisions based on the input data. ML techniques include supervised learning, unsupervised learning, reinforcement learning, and semi-supervised learning.
- **Deep learning:** DL is a subset of ML that specifically focuses on training artificial neural networks with multiple layers (deep neural networks) to learn hierarchical representations of data. DL architectures, often referred to as deep neural networks or deep neural nets, are capable of automatically learning and extracting complex features from raw input data. DL has achieved essential breakthroughs in computer vision, natural language processing, speech recognition, and recommendation systems.

In summary, AI is the broader field that encompasses the development of intelligent systems. At the same time, ML is a subset of AI that focuses on algorithms and models that enable machines to learn from data. DL is a further specialization within ML that adds deep neural networks to learn complex representations. ML and DL are key components of AI, and their advancements have driven many recent breakthroughs in Artificial Intelligence applications. Take a look at the following figure: