

Wydawnictwo Helion ul. Chopina 6 44-100 Gliwice tel. (32)230-98-63 e-mail: helion@helion.pl

Teoria sygnałów. Wstęp. Wydanie II poprawione i uzupełnione

Autorzy: Jacek Izydorczyk, Grzegorz Płonka, Grzegorz Tyma ISBN: 83-246-0401-4 Format: B5, stron: 304

Kompendium wiedzy na temat sygnałów i metod ich przetwarzania

• Modulacja sygnałów

ion.nl

- Transformaty Fouriera i Laplace'a
- · Filtry analogowe i cyfrowe

Teoria sygnałów to jedna z fundamentalnych dziedzin wiedzy technicznej. Jej znajomość jest niezbędna nie tylko projektantom urządzeń elektronicznych, ale również automatykom, informatykom, elektrotechnikom i specjalistom od telekomunikacji. Rozwój techniki cyfrowej zrewolucjonizował metody przetwarzania sygnałów, lecz podstawy tych mechanizmów są niezmienne – nadal wykorzystywane są transformaty Fouriera i Laplace'a, klasyczne algorytmy modulacji oraz reguły projektowania urządzeń.

Książka "Teoria sygnałów. Wstęp. Wydanie II" to kolejne wydanie publikacji poświęconej sygnałom i ich przetwarzaniu. Zawiera zbiór najważniejszych informacji związanych z przekształcaniem i modulowaniem sygnałów metodami analogowymi i cyfrowymi oraz projektowaniem filtrów aktywnych i pasywnych. Każdy jej rozdział stanowi osobny wykład uzupełniony przykładami i zadaniami do samodzielnego rozwiązania, który można przeczytać bez odwoływania się do pozostałych wykładów.

- Szeregi i transformaty Fouriera
- Modulacja sygnałów
- Przekształcenie Laplace'a
- Projektowanie filtrów analogowych
- Sygnały dyskretne i cyfrowe
- Modulacja impulsowa
- Dyskretna transformata Fouriera
- · Liniowe układy cyfrowe
- · Projektowanie filtrów cyfrowych

Opanuj podstawy technologii cyfrowej

Spis treści

Rozdzia	ał 1. Szereg Fouriera	9
1.1.	Wstęp	9
1.2.	Definicja rozwinięcia w szereg Fouriera	10
1.3.	Warunki Dirichleta	16
1.4.	Wybrane własności szeregów Fouriera	18
1.5.	Stan ustalony w obwodach liniowych z wymuszeniami okresowymi	20
1.6.	Przykłady zastosowań szeregów Fouriera	22
1.7.	Literatura	26
1.8.	Zadania	26
Rozdzia	ł 2. Transformacja Fouriera	31
2.1.	Definicja przekształcenia Fouriera	31
2.2.	Warunki Dirichleta istnienia transformaty Fouriera	33
2.3.	Wybrane własności przekształcenia Fouriera	34
2.4.	Gęstość widmowa sygnału na wyjściu układu liniowego	39
2.5.	Przykłady	39
2.6.	Literatura	48
Rozdział 3. Modulacja		
3.1.	Wstęp	49
3.2.	Modulacja w paśmie podstawowym	50
3.3.	Modulacja sygnału sinusoidalnego	51
	3.3.1. Modulacja amplitudowa	51
	3.3.2. Przemiana częstotliwości	58
	3.3.3. Modulacja kątowa	60
	3.3.4. Modulacja kwadraturowa	64
3.4.	Literatura	65
3.5.	Zadania	66

6	Spis treści
	Spis desei

Rozdzi	ał 4. Prz	zekształcenie Laplace'a	. 67
4.1.	Przeks	ztałcenie Laplace'a	. 67
4.2.	Odwro	tna transformacja Laplace'a	. 73
	4.2.1.	Wzór Riemanna-Mellina	. 73
	4.2.2.	Funkcje wymierne, residua i rozkład na ułamki proste	. 77
4.3.	Własno	ości przekształcenia Laplace'a	. 81
	4.3.1.	Liniowość transformaty	. 81
	4.3.2.	Transformata pochodnej sygnału \mathscr{L} -transformowalnego $\ldots \ldots \ldots$. 81
	4.3.3.	Transformata całki sygnału \mathscr{L} -transformowalnego $\ldots \ldots \ldots \ldots$. 82
	4.3.4.	Granica sygnału w zerze	. 82
	4.3.5.	Pochodna transformaty sygnału \mathscr{L} -transformowalnego $\ldots \ldots \ldots$. 82
	4.3.6.	Opóźnienie sygnału \mathscr{L} -transformowalnego $\ldots \ldots \ldots \ldots \ldots \ldots$. 83
	4.3.7.	Przesunięcie argumentu obrazu \mathscr{L} -transformowalnego $\ldots \ldots \ldots$. 83
	4.3.8.	Transformata sygnału okresowego	. 83
	4.3.9.	Transformata splotu sygnałów \mathscr{L} -transformowalnych $\ldots \ldots \ldots$. 84
4.4.	Zastos	owanie przekształcenia Laplace'a	. 84
	4.4.1.	Równania różniczkowe zwyczajne	. 84
	4.4.2.	Równania różniczkowe cząstkowe	. 88
	4.4.3.	Równania całkowe	. 90
4.5.	Transn	nitancja	. 91
	4.5.1.	Odpowiedź impulsowa układu	. 94
	4.5.2.	Badanie stabilności układu	. 95
	4.5.3.	Transmitancja operatorowa a transmitancja symboliczna	. 100
4.6.	Literat	ura	. 102
4.7.	Zadani	ia	. 102
Rozdzi	ał 5. Fil	try analogowe	. 105
5.1.	Filtr id	lealny	. 105
5.2.	Aproks	symacja charakterystyki amplitudowej filtru idealnego	. 108
	5.2.1.	Filtr Butterwortha	. 108
	5.2.2.	Aproksymacja Czebyszewa	. 116
	5.2.3.	Przekształcenia częstotliwości	. 122
5.3.	Syntez	a pasywnych filtrów LC o charakterystyce Butterwortha i Czebyszewa	. 132
	5.3.1.	Obwód łańcuchowy otwarty na końcu	. 133
	5.3.2.	Obciążony obwód łańcuchowy	. 141
	5.3.3.	Wzory dla syntezy filtrów Butterwortha — symetryczny obwód łańcuchow	vy 143
	5.3.4.	Wzory dla syntezy filtrów Butterwortha	. 144
	5.3.5.	Wzory dla syntezy filtrów Czebyszewa	. 146
	5.3.6.	Przekształcenia częstotliwości raz jeszcze	. 148
	5.3.7.	Kilka słów o projektowaniu filtrów pasywnych	. 152
5.4.	Syntez	a filtrów aktywnych RC	. 153
	5.4.1.	Idealny wzmacniacz operacyjny	. 153
	5.4.2.	Kaskadowy filtr aktywny	. 157
	5.4.3.	Równoległy filtr aktywny	. 157
	5.4.4.	Transmitancje rzędu drugiego	. 158
	5.4.5.	Układy z wielokrotnym sprzężeniem zwrotnym	. 160
5.5.	Charak	cterystyka opóźnienia grupowego	. 164
	5.5.1.	Opóźnienie grupowe filtru o stałych skupionych	. 164

	5.5.2.	Wyrównywanie charakterystyki fazowej filtru	166
	5.5.3.	Meandry przyczynowości	169
5.6.	Literatı	ıra	172
5.7.	Zadania	a	173
Rozdzia	ł 6. Mo	dulacja impulsowa, sygnały dyskretne i cyfrowe	175
6.1.	Transfo	rmata Fouriera dystrybucji delta Diraca	175
	6.1.1.	Transformaty Fouriera funkcji trygonometrycznych	175
	6.1.2.	Transformata Fouriera skoku jednostkowego	176
	6.1.3.	Transformata Fouriera całki sygnału	178
	6.1.4.	Transformata Fouriera szeregu impulsów Diraca	179
	6.1.5.	Transformata Fouriera funkcji okresowej	181
	6.1.6.	Reguła sumacyjna Poissona	182
6.2.	Sygnał	o ograniczonym paśmie częstotliwości i sygnał o ograniczonym czasie	
	trwania	l	183
	6.2.1.	Nierówność Schwartza	183
	6.2.2.	Własności sygnałów o ograniczonym czasie trwania	184
	6.2.3.	Własności sygnałów o ograniczonym paśmie częstotliwości	185
6.3.	Sygnał	dyskretny	189
	6.3.1.	Modulacja impulsowa — sygnał dyskretny	189
	6.3.2.	Widmo sygnału dyskretnego	190
	6.3.3.	Odtwarzanie sygnału analogowego na podstawie sygnału dyskretnego	191
	6.3.4.	Twierdzenie Kotelnikowa-Shannona-Nyquista	194
	6.3.5.	Wpływ kształtu sygnałów próbkujących na widmo sygnału zmodulowanego	195
	6.3.6.	Decymacja i interpolacja	196
	6.3.7.	Dowód twierdzenia o próbkowaniu bez teorii dystrybucji	198
	6.3.8.	Próbkowanie sygnałów pasmowych — obwiednia sygnału	200
6.4.	Sygnał	cyfrowy	206
	6.4.1.	Stałoprzecinkowy, binarny format zapisu liczb	206
	6.4.2.	Zmiennoprzecinkowy, binarny format zapisu liczb	207
	6.4.3.	Podział kanału w dziedzinie czasu (TDM — time division multiplexing) .	209
	6.4.4.	Szumy kwantowania	210
	6.4.5.	Przetwarzanie $\Delta \Sigma$	211
	6.4.6.	Wzór Shannona	223
6.5.	Literatu	Ira	224
6.6.	Zadania	a	225
Rozdzia	ł 7. Dys	skretna transformacja Fouriera	227
7.1.	Dyskret	na transformacja Fouriera	227
	7.1.1.	Sygnał dyskretny o skończonym czasie trwania i jego widmo	227
	7.1.2.	Dyskretna transformacja Fouriera	229
	7.1.3.	Własności DFT	231
7.2.	Szybki	algorytm obliczania dyskretnej transformaty Fouriera (FFT)	240
	7.2.1.	Algorytm FFT z podziałem w dziedzinie czasu	240
	7.2.2.	Algorytm FFT z podziałem w dziedzinie częstotliwości	242
	7.2.3.	O dodawaniu i mnożeniu liczb przez komputery	244
	7.2.4.	Przykłady zastosowań DFT poza cyfrowym przetwarzaniem sygnałów	249
7.3.	Algoryt	m swiergotowy	252

7.4.	Literatura	255
7.5.	Zadania	255
Rozdzia	ł 8. Transformacja $\mathcal Z$	257
8.1.	Wstęp	257
8.2.	Definicja transformacji \mathcal{Z}	257
8.3.	Transformacja odwrotna	260
8.4.	Transformacja \mathcal{Z} sygnału przyczynowego	261
8.5.	Transformacja sygnału stabilnego	262
8.6.	Własności transformacji \mathcal{Z}	263
8.7.	Związek z transformacją Fouriera	267
8.8.	Literatura	268
8.9.	Zadania	268
Rozdzia	ł 9. Liniowe układy dyskretne	269
9.1.	Wstęp	269
9.2.	Równania różnicowe i równania stanu	269
9.3.	Odpowiedź impulsowa	272
9.4.	Transmitancja	273
9.5.	Przyczynowość i stabilność układów cyfrowych a obszar zbieżności transmitancji	276
9.6.	Charakterystyka częstotliwościowa a zera i bieguny transmitancji	276
9.7.	Literatura	277
9.8.	Zadania	278
Rozdzia	10. Filtry cyfrowe	279
10.1.	Filtry SOI	280
	10.1.1. Metoda okien czasowych	281
10.2.	Filtry NOI	285
	10.2.1. Projektowanie filtrów NOI	285
10.3.	Literatura	292
Skorowi	idz	293

2.1. Definicja przekształcenia Fouriera

Spróbujmy znaleźć wzory na transformację Fouriera sygnałów aperiodycznych, korzystając z wyników otrzymanych dla szeregów Fouriera. Pomysł jest następujący: niech analizowany sygnał aperiodyczny zostanie na chwilę zamieniony na okresowy przez jego powielenie z okresem *T*. Dla takiego sygnału potrafimy znaleźć rozwinięcie. Następnie sprawdzimy, jak będą się zachowywały współczynniki rozwinięcia w przypadku, gdy z okresem będziemy zdążać do nieskończoności. Zabieg ten spowoduje, iż nasz sztucznie powielony, okresowy przebieg znów zamieni się w sygnał aperiodyczny.

Rozpatrzmy przypadek sygnału okresowego, którego rozwinięcie zostało znalezione w przykładzie 1.8, w rozdziale poświęconym szeregom Fouriera. Sygnał ten, o okresie T, może być opisany wzorem

$$x(t) = \begin{cases} 1, & \text{gdy} & |t| < T_1, \\ 0, & \text{gdy} & T_1 < |t| < T/2. \end{cases}$$
(2.1)

Znalezione współczynniki rozwinięcia mają postać

$$c_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T}, \quad \text{gdzie} \quad \omega_0 = \frac{2\pi}{T}.$$
(2.2)

Zdefiniujmy nową wielkość w postaci

$$Tc_k = \frac{2\sin(\omega T_1)}{\omega} \bigg|_{\omega = k\omega_0}$$
(2.3)

i nazwijmy funkcję stojącą po prawej stronie równości *obwiednią*. Współczynniki rozwinięcia mogą być traktowane jako próbki obwiedni pobierane w równych odstępach (rysunek 2.1). Dla ustalonej wartości T_1 obwiednia jest niezależna od T. Wraz ze wzrostem T maleją odstępy pomiędzy pobieranymi próbkami obwiedni. W granicznym przypadku, gdy T dąży do nieskończoności, sygnał okresowy staje się sygnałem aperiodycznym, a próbki Tc_k tworzą obwiednię.

Rysunek 2.1. Obwiednia Tc_k i próbki pobierane z niej z okresem próbkowania (a) $T = 4T_1$ i (b) $T = 8T_1$

Oznaczmy sztucznie utworzony sygnał okresowy przez $x_1(t)$ (rysunek 2.2). Możemy dla niego napisać znane wzory rozwinięcia w szereg Fouriera:

$$x_1(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t},$$
(2.4a)

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} x_1(t) \,\mathrm{e}^{-\mathrm{j}k\omega_0 t} \,\mathrm{d}t, \qquad (2.4\mathrm{b})$$

gdzie $\omega_0 = 2\pi/T$. Sygnał okresowy $x_1(t)$ powstał przez powielenie z okresem T sygnału x(t), zatem $x_1(t) = x(t)$ dla |t| < T/2, ponadto x(t) = 0 poza tym przedziałem. Korzystając z tych informacji możemy poprzedni wzór zapisać w postaci

 $c_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \,\mathrm{e}^{-\mathrm{j}k\omega_0 t} \,\mathrm{d}t = \frac{1}{T} \int_{-\infty}^{\infty} x(t) \,\mathrm{e}^{-\mathrm{j}k\omega_0 t} \,\mathrm{d}t \,. \tag{2.5}$

Rysunek 2.2. Sygnał aperiodyczny x(t) i sztucznie utworzony sygnał okresowy $x_1(t)$

Zatem obwiednię $X(j\omega)$ z Tc_k można przedstawić jako

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt.$$
 (2.6)

Współczynniki rozwinięcia wyliczamy:

$$c_k = \frac{1}{T} X(\mathbf{j}k\omega_0) \,. \tag{2.7}$$

Korzystając z tego, otrzymujemy

$$x_{1}(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T} X(jk\omega_{0}) e^{jk\omega_{0}t} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\omega_{0}) e^{jk\omega_{0}t} \omega_{0}.$$
 (2.8)

Gdy okres *T* dąży do nieskończoności, to $x_1(t)$ dąży do x(t), a ω_0 dąży do zera. W efekcie w ostatnim wzorze x(t) zastąpi $x_1(t)$, a po prawej stronie suma zostanie zastąpiona całką

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega.$$
(2.9)

Ostatecznie otrzymaliśmy parę wzorów na proste i odwrotne przekształcenie Fouriera:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt, \qquad (2.10a)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega.$$
 (2.10b)

Funkcja po transformacji może być zapisana we współrzędnych biegunowych:

$$X(j\omega) = |X(j\omega)| e^{j\arg[X(j\omega)]} .$$
(2.11)

Moduł $X(\omega) = |X(j\omega)|$ nosi nazwę gęstości widmowej amplitudy, natomiast faza $\varphi(\omega) = \arg[X(j\omega)]$ nazywana jest gęstością widmową fazy (często zamiennie mówi się o widmie amplitudowym i fazowym).

Podane zostaną teraz warunki, jakie musi spełniać funkcja x(t), aby można było znaleźć jej transformatę Fouriera.

2.2. Warunki Dirichleta istnienia transformaty Fouriera

Podobnie jak dla sygnałów okresowych podaje się trzy warunki, zwane warunkami Dirichleta, na istnienie transformacji Fouriera funkcji x(t).

Warunek 1. Funkcja x(t) jest bezwzględnie całkowalna, tzn.

$$\int_{-\infty}^{\infty} |x(t)| \, \mathrm{d}t < \infty. \tag{2.12}$$

Warunek 2. Funkcja x(t) ma skończoną liczbę maksimów i minimów w dowolnym skończonym przedziale.

Warunek 3. Funkcja x(t) ma skończoną liczbę punktów nieciągłości w dowolnym skończonym przedziale. Ponadto wartości funkcji w tych punktach muszą być ograniczone.

W kolejnym podrozdziale przedstawiono wybrane własności przekształcenia Fouriera.

2.3. Wybrane własności przekształcenia Fouriera

Liniowość

Jeżeli

$$x(t) \stackrel{\circ}{=} X(j\omega) \quad \text{oraz} \quad y(t) \stackrel{\circ}{=} Y(j\omega),$$
 (2.13a)

to

$$a x(t) + b y(t) \stackrel{\circ}{=} a X(j\omega) + b Y(j\omega)$$
. (2.13b)

Dowód twierdzenia o liniowości przekształcenia Fouriera jest łatwy i wynika wprost ze wzoru na proste przekształcenie Fouriera.

Przesunięcie w czasie

Jeżeli $x(t) \stackrel{\circ}{=} X(j\omega)$, to $x(t - t_0) \stackrel{\circ}{=} e^{-j\omega t_0} X(j\omega)$. Udowodnijmy to. Wiemy, iż

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega.$$
(2.14)

Wprowadzając przesunięcie w czasie, otrzymujemy

$$x(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \,\mathrm{e}^{j\omega(t-t_0)} \,\mathrm{d}\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{e}^{-j\omega t_0} \,X(j\omega) \,\mathrm{e}^{j\omega t} \,\mathrm{d}\omega \,. \tag{2.15}$$

Dostajemy zatem

$$\mathscr{F}\left\{x(t-t_0)\right\} = \mathrm{e}^{-\mathrm{j}\omega t_0} X(\mathrm{j}\omega) \,. \tag{2.16}$$

Warto zauważyć, że przesunięcie oryginału powoduje zmianę jedynie gęstości widmowej fazy, natomiast bez zmiany pozostaje gęstość widmowa amplitudy.

Przesunięcie w dziedzinie częstotliwości

Jeżeli $x(t) \stackrel{\circ}{=} X(j\omega)$, to $e^{j\omega_0 t} x(t) \stackrel{\circ}{=} X[j(\omega - \omega_0)]$. Udowodnijmy to. Wiemy, iż

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega.$$
(2.17)

Wprowadzając przesunięcie w częstotliwości, otrzymujemy

$$\mathscr{F}^{-1}\left\{X[\mathbf{j}(\omega-\omega_0)]\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X[\mathbf{j}(\omega-\omega_0)] \, \mathrm{e}^{\mathbf{j}\omega t} \, \mathrm{d}\omega = = \frac{\mathrm{e}^{\mathbf{j}\omega_0 t}}{2\pi} \int_{-\infty}^{\infty} X(v) \, \mathrm{e}^{\mathbf{j}vt} \, \mathrm{d}v = \mathrm{e}^{\mathbf{j}\omega_0 t} \, x(t) \,.$$
(2.18)

Różniczkowanie i całkowanie oryginału

Zróżniczkujmy wzór $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ po czasie; w efekcie otrzymamy

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \doteq \mathrm{j}\omega X(\mathrm{j}\omega) \tag{2.19}$$

Twierdzenie powyższe jest prawdziwe, gdy funkcja x(t) jest bezwzględnie całkowalna w przedziale $(-\infty, +\infty)$, ciągła i dąży do zera dla $t \to \pm \infty$ oraz ma prawie wszędzie pochodną $\dot{x}(t)$, która jest bezwzględnie całkowalna w przedziale $(-\infty, +\infty)$.

Niestety wzór na transformatę Fouriera całki nie jest tak prosty, jak w przypadku transformaty Laplace'a:

$$\int_{-\infty}^{t} x(\zeta) \,\mathrm{d}\zeta \doteq \frac{X(j\omega)}{j\omega} + \pi \,X(0)\,\delta(\omega)\,. \tag{2.20}$$

Aby go udowodnić, trzeba zauważyć, że sygnał $\int_{-\infty}^{t} x(\zeta) d\zeta$ jest splotem sygnału x(t) z jedynką Heaviside'a

$$\mathbf{1}(t) = \begin{cases} 1 & \text{dla} \quad t \ge 0, \\ 0 & \text{dla} \quad t < 0, \end{cases}$$
(2.21)

i zastosować twierdzenie o transformacie Fouriera splotu sygnałów 1 .

Skalowanie w czasie i częstotliwości (podobieństwo)

Jeżeli $x(t) \stackrel{\circ}{=} X(j\omega)$, to dla dowolnej stałej a > 0 zachodzi

$$x(at) \doteq \frac{1}{a} X\left(\frac{j\omega}{a}\right). \tag{2.22}$$

Dowód:

$$\mathscr{F}[x(at)] = \int_{-\infty}^{\infty} x(at) e^{-j\omega t} dt = \int_{-\infty}^{\infty} x(\tau) e^{-j\frac{\omega}{a}\tau} \frac{d\tau}{a} = \frac{1}{a} X\left(\frac{j\omega}{a}\right).$$
(2.23)

Twierdzenie o transformacie splotu

Jeżeli

$$x(t) \stackrel{\circ}{=} X(j\omega) \quad \text{oraz} \quad y(t) \stackrel{\circ}{=} Y(j\omega),$$
 (2.24a)

to

$$\int_{-\infty}^{\infty} x(t-\tau) y(\tau) \,\mathrm{d}\tau \doteq X(j\omega) Y(j\omega) \,. \tag{2.24b}$$

Udowodnijmy to:

$$\mathscr{F}\left\{\int_{-\infty}^{\infty} x(t-\tau)y(\tau)\,\mathrm{d}\tau\right\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(t-\tau)y(\tau)\,\mathrm{d}\tau\right] \mathrm{e}^{-\mathrm{j}\omega t}\,\mathrm{d}t = = \int_{-\infty}^{\infty} y(\tau) \left[\int_{-\infty}^{\infty} x(t-\tau)\,\mathrm{e}^{-\mathrm{j}\omega t}\,\mathrm{d}t\right] \mathrm{d}\tau.$$
(2.25)

¹ Więcej o transformacie Fouriera jedynki Heaviside'a napisano w podrozdziale 6.1.2 na stronie 176.

36 2. Transformacja Fouriera

Wprowadzając nową zmienną całkowania $u = t - \tau$, mamy dt = du oraz $t = u + \tau$, wobec tego

$$\mathscr{F}\left\{\int_{-\infty}^{\infty} x(t-\tau)y(\tau)d\tau\right\} = \int_{-\infty}^{\infty} y(\tau) \left[\int_{-\infty}^{\infty} x(u) e^{-j\omega(u+\tau)} dt\right] d\tau =$$

$$= \int_{-\infty}^{\infty} y(\tau) e^{-j\omega\tau} d\tau \int_{-\infty}^{\infty} x(u) e^{-j\omega u} du = X(j\omega)Y(j\omega).$$
(2.26)

Wzór Parsevala

Jeżeli

$$x(t) \stackrel{\circ}{=} X(j\omega), \qquad (2.27a)$$

to

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega.$$
 (2.27b)

Spróbujmy to wykazać:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} x(t) x^*(t) dt = \int_{-\infty}^{\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(j\omega) e^{-j\omega t} d\omega \right] dt.$$
(2.28)

Zmieniając kolejność całkowania, otrzymujemy

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(j\omega) \left[\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \right] d\omega =$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(j\omega) X(j\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega.$$

Wzór Parsevala posiada interpretację fizyczną. Wartość całki $\int_{-\infty}^{\infty} |x(t)|^2 dt$ może być traktowana jako energia zamieniona na ciepło na oporniku 1 Ω przy przepływie prądu i = x(t) w nieskończenie wielkim przedziale czasowym. Zgodnie ze wzorem Parsevala całka z kwadratu gęstości widmowej amplitudy również przedstawia energię. Dlatego mówi się o rozkładzie energii w funkcji pulsacji, a wielkość $|X(j\omega)|^2/(2\pi)$ nazywana jest gęstością widmową energii².

Symetria dualna

Podobieństwo wzorów na proste i odwrotne przekształcenie Fouriera pociąga za sobą dualność oryginałów i ich obrazów. Zilustrujmy to przykładem. Znajdźmy obraz dla sygnału czasowego będącego pojedynczym impulsem prostokątnym, a następnie znajdźmy oryginał dla pojedynczego impulsu prostokątnego w dziedzinie częstotliwości:

$$x_{1}(t) = \begin{cases} 1 & \text{dla} \quad |t| < T_{1}, \\ 0 & \text{dla} \quad T_{1} < |t| \end{cases} \stackrel{\text{answer}}{=} X_{1}(j\omega) = \frac{2\sin(\omega T_{1})}{\omega}$$
(2.29a)

$$x_2(t) = \frac{\sin(\omega_0 t)}{\pi t} \quad \hat{=} \quad X_2(j\omega) = \begin{cases} 1 & \text{dla} \quad |\omega| < \omega_0, \\ 0 & \text{dla} \quad \omega_0 < |\omega|. \end{cases}$$
(2.29b)

² Jeżeli całkowanie we wzorze (2.27b) odbywa się względem częstotliwości f wyrażonej w hercach, a nie względem pulsacji ω wyrażonej w radianach na sekundę, to pomija się współczynnik $1/(2\pi)$.

Odpowiednie pary (oryginał i transformata) przedstawiono na rysunku 2.3. Łatwo zauważyć symetrię, jaka występuje w tych dwóch przekształceniach. Będzie ona występowała także w przypadku innych funkcji. Jeżeli tylko weźmiemy jedną funkcję i policzymy jej transformatę, a następnie oryginał potraktujemy jako obraz i zastosujemy do niego odwrotne przekształcenie, to otrzymane w ten sposób obraz i oryginał będą do siebie podobne. Możemy to zapisać w następującej postaci:

$$x(t) \stackrel{\circ}{=} X(j\omega) \implies X(t) \stackrel{\circ}{=} 2\pi x(-\omega).$$
 (2.30)

Rysunek 2.3. Podobieństwo oryginałów i obrazów

Sprzężenie i symetria

Jeżeli

 $x(t) \stackrel{\circ}{=} X(j\omega), \qquad (2.31a)$

to

$$x^{*}(t) \doteq X^{*}(-j\omega)$$
. (2.31b)

Można to w prosty sposób udowodnić. Obliczając wartość sprzężoną $X(j\omega)$, otrzymujemy

$$X^*(\mathbf{j}\omega) = \left[\int_{-\infty}^{\infty} x(t) \,\mathrm{e}^{-\mathbf{j}\omega t} \,\mathrm{d}t\right]^* = \int_{-\infty}^{\infty} x^*(t) \,\mathrm{e}^{\mathbf{j}\omega t} \,\mathrm{d}t\,. \tag{2.32}$$

Zamieniając ω na $-\omega$, uzyskujemy

$$X^{*}(-j\omega) = \int_{-\infty}^{\infty} x^{*}(t) e^{-j\omega t} dt = \mathscr{F}\{x^{*}(t)\}.$$
 (2.33)

Jeśli x(t) jest rzeczywiste i $x^*(t) = x(t)$, to na podstawie dwóch poprzednich wzorów łatwo pokazać, że

 $X(-j\omega) = X^*(j\omega) \quad \text{oraz} \quad X^*(-j\omega) = X(j\omega).$ (2.34)

Jeżeli przedstawimy $X(j\omega)$ w postaci

$$X(j\omega) = \operatorname{Re}\{X(j\omega)\} + j\operatorname{Im}\{X(j\omega)\}, \qquad (2.35)$$

to korzystając ze wzoru (2.34) otrzymujemy następujące zależności (cały czas zakładamy, że x(t) jest rzeczywiste):

$$Re{X(j\omega)} = Re{X(-j\omega)},$$

$$Im{X(j\omega)} = -Im{X(-j\omega)}.$$
(2.36)

Ze wzorów tych wynika także, że gęstość widmowa amplitudy jest funkcją parzystą, a gęstość widmowa fazy — funkcją nieparzystą. Wynik ten można także otrzymać w inny sposób. Jeśli zapiszemy $e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$, to transformata Fouriera sygnału x(t) może być zapisana w postaci

$$\mathscr{F}\{x(t)\} = X(j\omega) = X_1(j\omega) - jX_2(j\omega), \qquad (2.37)$$

gdzie

$$X_{1}(j\omega) = \int_{-\infty}^{\infty} x(t) \cos(\omega t) dt,$$

$$X_{2}(j\omega) = \int_{-\infty}^{\infty} x(t) \sin(\omega t) dt.$$
(2.38)

Widać, że funkcja $X_1(j\omega)$ jest parzysta, zaś $X_2(j\omega)$ nieparzysta względem ω . Zatem łatwo pokazać, iż gęstość widmowa amplitudy jest funkcją parzystą, a gęstość widmowa fazy funkcją nieparzystą względem ω .

W tabeli 2.1 zebrano niektóre własności transformaty Fouriera. Natomiast w tabeli 2.2 znalazły się wybrane pary transformat. Wyliczenia poszczególnych transformat Czytelnik może znaleźć w podrozdziale zawierającym przykłady.

Własność	Sygnał aperiodyczny $x(t), y(t)$	Transformata Fouriera $X(j\omega), Y(j\omega)$
Liniowość	a x(t) + b y(t)	$a X(j\omega) + b Y(j\omega)$
Przesunięcie w czasie	$x(t-t_0)$	$e^{-j\omega t_0} X(j\omega)$
Przesunięcie w częstotliwości	$e^{j\omega_0 t} x(t)$	$X[\mathbf{j}(\omega-\omega_0)]$
Różniczkowanie oryginału	$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$	$j\omega X(j\omega)$
Całkowanie oryginału	$\int_{-\infty}^t x(\zeta) \mathrm{d}\zeta$	$\frac{X(j\omega)}{j\omega} + \pi X(0) \delta(\omega)$
Skalowanie w czasie i częstotliwości (podobieństwo)	x(at), $a > 0$	$\frac{1}{a}X\left(\frac{\mathbf{j}\omega}{a}\right)$
Splot	$\int_{-\infty}^{\infty} x(t-\tau) y(\tau) \mathrm{d}\tau$	$X(\mathbf{j}\omega) Y(\mathbf{j}\omega)$
Wzór Parsevala	$\int_{-\infty}^{\infty} x(t) ^2 \mathrm{d}t = \frac{1}{2}$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(\mathbf{j}\omega) ^2\mathrm{d}\omega$

 Tabela 2.1.
 Własności transformaty Fouriera

Oryginał	Obraz
$\sum_{k=-\infty}^{\infty} c_k \mathrm{e}^{\mathrm{j}k\omega_0 t}$	$2\pi\sum_{k=-\infty}^{\infty}c_k\delta(\omega-k\omega_0)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
x(t) = 1	$2\pi\delta(\omega)$
$\delta(t)$	1
1 (<i>t</i>)	$\frac{1}{j\omega} + \pi\delta(\omega)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$
$\frac{\sin(\omega_0 t)}{\omega_0 t}$	$X(\mathbf{j}\omega) = \begin{cases} \pi/\omega_0 & \text{dla} & \omega < \omega_0, \\ 0 & \text{dla} & \omega > \omega_0 \end{cases}$
$e^{-\omega_0^2 t^2}$	$\frac{\sqrt{\pi}}{ \omega_0 }\exp\Bigl(-\frac{\omega^2}{4\omega_0^2}\Bigr)$
$e^{- \omega_0 t }$	$\frac{2 \omega_0 }{\omega_0^2+\omega^2}$

Tabela 2.2. Wybrane pary transformat

_

2.4. Gęstość widmowa sygnału na wyjściu układu liniowego

Przedstawiając własności przekształcenia Fouriera, pokazano, że splot dwóch sygnałów równy jest iloczynowi transformat Fouriera tych sygnałów. Korzystając z tej własności, możemy podać związek pomiędzy transformatą Fouriera $X(j\omega)$ sygnału na wejściu układu liniowego a transformatą Fouriera $Y(j\omega)$ sygnału wyjściowego. Dany jest on zależnością

$$Y(j\omega) = K(j\omega) X(j\omega), \qquad (2.39)$$

gdzie $K(j\omega) = |K(j\omega)| e^{j \arg[K(j\omega)]}$ jest charakterystyką częstotliwościową obwodu. Związki pomiędzy gęstościami widmowymi amplitudy i fazy sygnału wejściowego i wyjściowego dane są wzorami

$$|Y(j\omega)| = |K(j\omega)| |X(j\omega)|, \qquad (2.40a)$$

$$\arg[Y(j\omega)] = \arg[K(j\omega)] + \arg[X(j\omega)].$$
(2.40b)

2.5. Przykłady

Przykład 2.1 Znajdź transformatę Fouriera delty Diraca. Rozwiązanie. Korzystając z definicji prostego przekształcenia Fouriera, otrzymujemy

$$\mathscr{F}{\delta(t)} = \int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt = 1.$$

Przykład 2.2 Znajdź transformatę Fouriera sygnału jednostkowego

$$\mathbf{1}(t) = \begin{cases} 0, & \text{gdy} & -\infty < t < 0, \\ 1, & \text{gdy} & \infty > t > 0. \end{cases}$$

Rozwiązanie. Niestety, w przypadku tej funkcji nie możemy skorzystać z twierdzenia o obrazie pochodnej, gdyż nie spełnia ona założeń. Wykorzystamy natomiast twierdzenie o obrazie całki. Skok jednostkowy może być przedstawiony jako całka z delty Diraca, tj. $\mathbf{1}(t) = \int_{-\infty}^{t} \delta(\zeta) \, d\zeta$. W efekcie otrzymujemy

$$\mathscr{F}\{x(t)\} = \frac{1}{j\omega} + \pi \,\delta(\omega) \,.$$

Przykład 2.3 Znajdź oryginał $X(j\omega) = \delta(\omega)$.

Rozwiązanie. Korzystając z definicji odwrotnego przekształcenia Fouriera, otrzymujemy

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi}.$$

Dzięki temu wynikowi możemy zapisać, jak wygląda transformata Fouriera wartości stałej:

$$\mathscr{F}{1} = 2\pi\,\delta(\omega)\,.$$

Przykład 2.4 Znajdź transformatę Fouriera sygnału okresowego x(t) mającego rozwinięcie w wykładniczy szereg Fouriera.

Rozwiązanie. Sygnał x(t) posiada rozwinięcie w szereg Fouriera, zatem

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \,\mathrm{e}^{\mathrm{j}k\omega_0 t} \,.$$

Znajdźmy transformatę Fouriera tego sygnału. Skorzystamy w tym przypadku z twierdzenia o przesunięciu obrazu³:

$$\mathscr{F}\{x(t)\} = \mathscr{F}\left\{\sum_{k=-\infty}^{\infty} c_k \,\mathrm{e}^{-\mathrm{j}k\omega_0 t}\right\} = \sum_{k=-\infty}^{\infty} 2\pi c_k \,\delta(\omega - k\omega_0) \,.$$

³ Chodzi tu o przesunięcie obrazu funkcji w dziedzinie częstotliwości.

Przykład 2.5 Znajdź transformatę Fouriera funkcji $x(t) = cos(\omega_0 t)$.

Rozwiązanie. Zapiszmy funkcję x(t), korzystając ze wzorów Eulera:

$$x(t) = \cos(\omega_0 t) = \frac{e^{-j\omega_0 t} + e^{j\omega_0 t}}{2}.$$

Korzystając teraz z twierdzenia o przesunięciu obrazu i wzoru na transformatę wartości stałej, otrzymujemy końcowy wzór:

$$\mathscr{F}\{\cos(\omega_0 t)\} = \pi \,\delta(\omega + \omega_0) + \pi \,\delta(\omega - \omega_0)\,.$$

W tym miejscu warto przeanalizować, jak wygląda gęstość widmowa funkcji typu $y(t) = x(t) \cos(\omega_0 t)$, w przypadku gdy znamy obraz funkcji x(t). Łatwo pokazać, korzystając z twierdzenia o przesunięciu obrazu, że jeżeli

$$\mathscr{F}{x(t)} = X(j\omega),$$

to

$$\mathcal{F}\{\boldsymbol{y}(t)\} = \mathcal{F}\left\{\frac{\boldsymbol{x}(t)}{2}\,\mathrm{e}^{-\mathrm{j}\omega_0 t} + \frac{\boldsymbol{x}(t)}{2}\,\mathrm{e}^{\mathrm{j}\omega_0 t}\right\} = \frac{1}{2}\boldsymbol{X}[\mathbf{j}(\boldsymbol{\omega}+\boldsymbol{\omega}_0)] + \frac{1}{2}\boldsymbol{X}[\mathbf{j}(\boldsymbol{\omega}-\boldsymbol{\omega}_0)]\,.$$

Więcej informacji na ten temat można znaleźć w rozdziale poświęconym modulacji.

Przykład 2.6

Znajdź transformatę Fouriera funkcji $x(t) = \sin(\omega_0 t)$.

Rozwiązanie. Zapiszmy funkcję x(t) w innej postaci:

$$x(t) = \sin(\omega_0 t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j}.$$

Korzystając teraz z twierdzenia o przesunięciu obrazu i wzoru na transformatę wartości stałej, otrzymujemy końcowy wzór:

$$\mathscr{F}\{\sin(\omega_0 t)\} = \pi j \delta(\omega + \omega_0) - \pi j \delta(\omega - \omega_0).$$

Przykład 2.7 Znajdź oryginał dla *X*(jω) danego wzorem

$$X(j\omega) = \frac{\pi}{\omega_0} [\mathbf{1}(\omega + \omega_0) - \mathbf{1}(\omega - \omega_0)].$$

Rozwiązanie. Korzystając z definicji odwrotnego przekształcenia Fouriera, otrzymujemy

$$x(t) = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} \frac{\pi e^{j\omega t}}{\omega_0} d\omega = \frac{1}{2jt\omega_0} e^{j\omega t} \Big|_{-\omega_0}^{\omega_0} = \frac{2j\sin(\omega_0 t)}{2j\omega_0 t} = \frac{\sin(\omega_0 t)}{\omega_0 t}.$$

Zatem

$$x(t) = \frac{\sin(\omega_0 t)}{\omega_0 t}.$$

Przykład 2.8

Znajdź transformatę Fouriera sygnału przedstawionego na rysunku 2.4.

Rysunek 2.4. Sygnał x(t) z przykładu 2.8

Rozwiązanie. Można oczywiście znaleźć obraz zadanej funkcji, korzystając ze wzoru definiującego to przekształcenie. Spróbujmy jednak ułatwić sobie trochę dojście do rozwiązania, wykorzystując twierdzenie o obrazie zróżniczkowanej funkcji. Zróżnicz-kujmy dwukrotnie funkcję x(t). Zabieg ten został zilustrowany na rysunkach 2.5 i 2.6. Druga pochodna składa się z czterech impulsów Diraca. W prosty sposób możemy znaleźć obraz drugiej pochodnej.

$$\mathcal{F}{\ddot{x}(t)} = \frac{A}{a-b} \mathcal{F}{\delta(t+a) - \delta(t+b) - \delta(t-b) + \delta(t-a)}$$
$$= \frac{A}{a-b} (e^{j\omega a} - e^{j\omega b} - e^{-j\omega b} + e^{-j\omega a}) = \frac{A}{a-b} [\cos(\omega a) - \cos(\omega b)].$$

Rysunek 2.5. Pierwsza pochodna sygnału x(t) z przykładu 2.8

Rysunek 2.6. Druga pochodna sygnału x(t) z przykładu 2.8

Pamiętając, że

$$\mathcal{F}\{\ddot{x}(t)\}=(\mathbf{j}\omega)^2\mathcal{F}\{x(t)\}\,,$$

otrzymujemy

$$\mathscr{F}{x(t)} = -\frac{1}{\omega^2} \frac{A}{a-b} [\cos(\omega a) - \cos(\omega b)].$$

Przykład 2.9 Znajdź transformatę Fouriera sygnału x(t) przedstawionego na rysunku 2.7.

Rysunek 2.7. Sygnał x(t) z przykładu 2.9

Rozwiązanie. Zróżniczkujmy dwukrotnie funkcję x(t). Zabieg ten został zilustrowany na rysunku 2.8. Druga pochodna składa się z trzech impulsów Diraca. W prosty sposób możemy znaleźć obraz drugiej pochodnej:

$$\mathcal{F}{\ddot{x}(t)} = \frac{A}{\varepsilon} \mathcal{F}{\delta(t+\varepsilon) - 2\delta(t) + \delta(t-\varepsilon)}$$
$$= \frac{A}{\varepsilon} (e^{j\omega\varepsilon} - 2 + e^{-j\omega\varepsilon}) = \frac{2A}{\varepsilon} [\cos(\omega\varepsilon) - 1] = -\frac{4A}{\varepsilon} \sin^2\left(\frac{\omega\varepsilon}{2}\right).$$

Rysunek 2.8. Pierwsza i druga pochodna sygnału x(t) z przykładu 2.9

Pamiętając, że

$$\mathscr{F}\{\ddot{x}(t)\} = (\mathbf{j}\omega)^2 \mathscr{F}\{x(t)\},\,$$

otrzymujemy

$$\mathscr{F}\{x(t)\} = \left(-\frac{1}{\omega^2}\right) \left[-\frac{4A}{\varepsilon} \sin^2\left(\frac{\omega\varepsilon}{2}\right)\right] = \frac{4A}{\varepsilon\omega^2} \sin^2\left(\frac{\omega\varepsilon}{2}\right).$$

Przykład 2.10 Oblicz oryginalny sygnał x(t), którego widmo przedstawione jest na rysunku 2.9.

Rozwiązanie. Korzystając z definicji odwrotnego przekształcenia Fouriera, możemy zapisać

$$\begin{aligned} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \, \mathrm{e}^{j\omega t} \, \mathrm{d}\omega = \\ &= \frac{1}{2\pi} \int_{-2A}^{0} \frac{\pi}{A} \frac{1}{2A} (2A + \omega) \, \mathrm{e}^{j\omega t} \, \mathrm{d}\omega + \frac{1}{2\pi} \int_{0}^{2A} \frac{\pi}{A} \frac{1}{2A} (2A - \omega) \, \mathrm{e}^{j\omega t} \, \mathrm{d}\omega \,. \end{aligned}$$

Rysunek 2.9. Widmo sygnału x(t) z przykładu 2.10

Obliczmy wartość pierwszej całki:

$$I_{1} = \frac{1}{4A^{2}} \int_{-2A}^{0} (2A + \omega) e^{j\omega t} d\omega =$$

= $\frac{1}{4A^{2}} \left\{ \left[\frac{2A}{jt} e^{j\omega t} \right]_{-2A}^{0} + \left[\frac{\omega}{jt} e^{j\omega t} \right]_{-2A}^{0} + \left[\frac{1}{t^{2}} e^{j\omega t} \right]_{-2A}^{0} \right\} = \frac{1}{4A^{2}} \left[\frac{2A}{jt} + \frac{1}{t^{2}} (1 - e^{-j2At}) \right]$

oraz drugiej:

$$I_{2} = \frac{1}{4A^{2}} \int_{0}^{2A} (2A - \omega) e^{j\omega t} d\omega =$$

= $\frac{1}{4A^{2}} \left\{ \left[\frac{2A}{jt} e^{j\omega t} \right]_{0}^{2A} + \left[\frac{-\omega}{jt} e^{j\omega t} \right]_{0}^{2A} - \left[\frac{1}{t^{2}} e^{j\omega t} \right]_{0}^{2A} \right\} = \frac{1}{4A^{2}} \left[\frac{-2A}{jt} - \frac{1}{t^{2}} (e^{j2At} - 1) \right].$

W efekcie otrzymujemy

$$\begin{aligned} x(t) &= I_1 + I_2 = \frac{1}{4(At)^2} (1 - e^{-jAt} + 1 - e^{jAt}) = \frac{1}{2(At)^2} [1 - \cos(2At)] = \\ &= \frac{1}{2(At)^2} [\sin^2(At) + \cos^2(At) - \cos^2(At) + \sin^2(At)]. \end{aligned}$$

Zatem

$$x(t) = \frac{\sin^2(At)}{(At)^2} = \left[\frac{\sin(At)}{At}\right]^2.$$

Przykład 2.11

Określić pulsację graniczną idealnego filtru dolnoprzepustowego o wzmocnieniu w paśmie przepuszczania równym 2, jeżeli wiadomo, że po pobudzeniu sygnałem

$$x(t) = \frac{500\sin^2(500t)}{(500t)^2}$$

energia sygnału na wejściu i wyjściu filtru jest taka sama.

Rozwiązanie. Na rysunku 2.10 przedstawiono gęstość widmową sygnału na wejściu filtru $X(\omega)$, wyjściu $Y(\omega)$ oraz charakterystykę częstotliwościową filtru $K(\omega)$. Obliczmy energię sygnału na wejściu filtru. Zgodnie ze wzorem Parsevala możemy zapisać

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^{2} d\omega.$$

Rysunek 2.10. Gęstości widmowe $X(\omega)$ i $Y(\omega)$ oraz charakterystyka częstotliwościowa filtru $K(\omega)$

W naszym przypadku

$$E_x = \frac{1}{2\pi} \int_{-1000}^0 \left[\pi \left(1 + \frac{\omega}{1000} \right) \right]^2 d\omega + \frac{1}{2\pi} \int_0^{1000} \left[\pi \left(1 - \frac{\omega}{1000} \right) \right]^2 d\omega =$$

= $\pi \int_{-1000}^0 \left(1 + \frac{\omega}{1000} \right)^2 d\omega = \pi \left[\omega + \frac{\omega^2}{10^3} + \frac{1}{3} \frac{\omega^3}{10^6} \right]_{-1000}^0 = \frac{\pi 10^3}{3}.$

Energia sygnału na wyjściu filtru dana jest wzorem

$$E_{y} = \frac{1}{2\pi} 2 \int_{-\omega_{g}}^{0} \left[2\pi \left(1 + \frac{\omega}{1000} \right) \right]^{2} d\omega = 4\pi \left[\omega + \frac{\omega^{2}}{10^{3}} + \frac{1}{3} \frac{\omega^{3}}{10^{6}} \right]_{-\omega_{g}}^{0} = 4\pi \left(\omega_{g} - \frac{\omega_{g}^{2}}{10^{3}} + \frac{1}{3} \frac{\omega_{g}^{3}}{10^{6}} \right).$$

Zgodnie z warunkami zadania $E_x = E_y$, zatem

$$\omega_{\rm g} - \frac{\omega_{\rm g}^2}{10^3} + \frac{1}{3} \frac{\omega_{\rm g}^3}{10^6} = \frac{1}{12} 10^3.$$

Rozwiązując to równanie, otrzymujemy

$$\omega_{\rm g} \approx 91,4 \, {\rm rad/s.}$$

Przykład 2.12 Znajdź transformatę Fouriera sygnału

$$x(t) = e^{-a|t|}, \quad a > 0.$$

Rozwiązanie. Zgodnie z definicją prostego przekształcenia Fouriera możemy zapisać

$$X(j\omega) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-j\omega t} dt = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt.$$

Zatem

$$X(j\omega) = \frac{1}{a - j\omega} e^{t(a - j\omega)} \Big|_{-\infty}^{0} - \frac{1}{a + j\omega} e^{-t(a + j\omega)} \Big|_{0}^{\infty} = \frac{1}{a - j\omega} + \frac{1}{a + j\omega} = \frac{2a}{a^{2} + \omega^{2}}.$$

Przykład 2.13 Wyznacz gęstość widmową impulsu prostokątnego przedstawionego na rysunku 2.11:

$$f(t) = A[\mathbf{1}(t+\varepsilon) - \mathbf{1}(t-\varepsilon)].$$

Rysunek 2.11. Sygnał f(t) z przykładu 2.13 oraz jego pierwsza pochodna

Rozwiązanie. Korzystając z twierdzenia o transformacie funkcji przesuniętej w czasie, znajdujemy transformatę Fouriera $\dot{f}(t)$:

$$\mathscr{F}\{\dot{f}(t)\} = A[\mathscr{F}\{\delta(t+\varepsilon)\} - \mathscr{F}\{\delta(t-\varepsilon)\}] = A(\mathrm{e}^{\mathrm{j}\omega\varepsilon} - \mathrm{e}^{-\mathrm{j}\omega\varepsilon})$$

Równocześnie na podstawie twierdzenia o transformacie pochodnej funkcji czasowej mamy

$$\mathscr{F}{\dot{f}(t)} = \mathbf{j}\omega F(\omega)$$

Wobec tego

$$\mathbf{j}\omega F(\omega) = A(\mathbf{e}^{\mathbf{j}\omega\varepsilon} - \mathbf{e}^{-\mathbf{j}\omega\varepsilon}).$$

W efekcie otrzymujemy

$$F(\omega) = \frac{2A(e^{j\omega\varepsilon} - e^{-j\omega\varepsilon})}{2j\omega} = \frac{2A}{\omega}\sin(\omega\varepsilon).$$

Przykład 2.14 Sygnał $x(t) = (\pi t)^{-1} \sin(100t)$ podano na dwa połączone kaskadowo filtry, których charakterystyki amplitudowe przedstawiono na rysunku 2.12, przy czym filtry te nie obciążają się wzajemnie. Oblicz energię sygnału y(t) na wyjściu układu.

Rysunek 2.12. Charakterystyki amplitudowe filtrów z przykładu 2.14

Rozwiązanie. Na rysunku 2.13 przedstawiono gęstości widmowe sygnałów na wejściu i wyjściu układu. Korzystając ze wzoru Parsevala oraz uwzględniając symetrię gęstości widmowej sygnału na wyjściu układu, możemy obliczyć szukaną energię:

$$E_y = 8\frac{1}{2\pi} \int_{20}^{40} \left(\frac{\omega - 20}{20}\right)^2 d\omega = 8\frac{1}{2\pi} \int_0^{20} \left(\frac{\omega}{20}\right)^2 d\omega = \frac{80}{3\pi}.$$

Rysunek 2.13. Gęstości widmowe sygnałów wejściowego i wyjściowego w przykładzie 2.14

Przykład 2.15 ······ Sygnał

$$x(t) = A\cos(\Omega t) \frac{\sin(\omega_0 t)}{\omega_0 t},$$

gdzie Ω = 300 rad/s, ω = 100 rad/s, A = 200, podano na wejście idealnego filtru górnoprzepustowego o wzmocnieniu w paśmie przepuszczania równym 2.

• Oblicz i narysuj gęstość widmową sygnału *x*(*t*).

• Wyznacz pulsację graniczną filtru, jeżeli wiadomo, że energia sygnału y(t) na wyjściu filtru stanowi 25% energii sygnału wejściowego.

Rozwiązanie. Gęstość widmową sygnału x(t) przedstawiono na rysunku 2.14. Wyznaczono ją jako gęstość widmową sygnału $\cos(\Omega t)$, zmodulowanego sygnałem $\operatorname{Sa}(\omega_0 t)^4$. Analitycznie może być ona zapisana w postaci

$$X(j\omega) = \pi [\mathbf{1}(\omega + 400) - \mathbf{1}(\omega + 200) + \mathbf{1}(\omega - 200) - \mathbf{1}(\omega - 400)].$$

Rysunek 2.14. Gęstość widmowa sygnału x(t) z przykładu 2.15

Energię sygnału x(t), zgodnie ze wzorem Parsevala, możemy obliczyć:

$$E_x = \frac{1}{2\pi} \int_{-400}^{-200} (\pi)^2 \,\mathrm{d}\omega + \frac{1}{2\pi} \int_{200}^{400} (\pi)^2 \,\mathrm{d}\omega = \frac{1}{\pi} \int_{200}^{400} (\pi)^2 \,\mathrm{d}\omega = 200\pi \,.$$

Natomiast energia sygnału y(t) wynosi

$$E_y = \frac{1}{\pi} \int_{\omega_g}^{400} (2\pi)^2 \,\mathrm{d}\omega = 4\pi (400 - \omega_g) \,.$$

⁴ Sa($\omega_0 t$) = ($\omega_0 t$)⁻¹ sin($\omega_0 t$).

Zgodnie z warunkami zadania $E_y = 0.25E_x$, zatem

$$4\pi(400 - \omega_{\rm g}) = 0.25 \cdot 200\pi$$

Rozwiązując to równanie, otrzymujemy

$$\omega_{\rm g} = 387,5 \, {\rm rad/s}$$

: 2.6. Literatura

- [1] M. Krakowski, *Elektrotechnika teoretyczna*, Państwowe Wydawnictwo Naukowe, Warszawa 1991.
- [2] A. V. Oppenheim, R. W. Schafer, *Cyfrowe przetwarzanie sygnałów*, Wydawnictwa Komunikacji i Łączności, Warszawa 1979.
- [3] A.V. Oppenheim, A.S. Willisky, *Signals & Systems*, Prentice Hall Inc., Upper Saddle River, New Jersey 1997.
- [4] A. Wojnar, Teoria sygnałów, Wydawnictwa Naukowo-Techniczne, Warszawa 1980.