Swift
Design Patterns

Reusable solutions for
Swift development with practical examples

Mihir Das

www.bpbonline.com

ii

First Edition 2024
Copyright © BPB Publications, India
ISBN: 978-93-55516-800

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

iii

Dedicated to
My beloved wife:

Priyanka

and

My parents

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

iv

About the Author

With over 13 years of experience in iOS development, Mihir Das excels in both native
and cross-platform mobile app development using Xamarin and Xamarin.Forms. He
has successfully delivered numerous B2B and B2C applications for iOS and Android,
demonstrating proficiency with Xcode, Android Studio, and Visual Studio. Mihir is skilled
in Object-Oriented Techniques, MVC Architecture, and mobile automation using Appium
and TestNG. He possesses advanced knowledge of RxSwift, MVVM, and SwiftUI,
advocating strongly for SOLID principles and software design patterns.

Outside of work, Mihir is deeply passionate about continuous learning, often found
exploring new skills in front of his computer. When he is not coding, he enjoys spending
quality time with his family.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

About the Reviewer

Balraj Verma is a passionate and experienced iOS developer. Ever since the first Apple
SDK was launched, he has been working in the mobile development field. He is currently
employed by a reputable consulting firm as a lead consultant. He has contributed to over
60 apps, some of which have millions of users, across a variety of industries, including
Augmented Reality, telematics, banking, health, and Telecom. Driven by his enthusiasm
for imparting knowledge and contributing to the community, he frequently contributes to
Medium and Stack Overflow, where he writes about mobile development and shares his
insights and experiences.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

vi

Acknowledgement

I want to express my deepest gratitude to my family and friends for their unwavering
support and encouragement throughout this book’s writing, especially my wife Priyanka
and my parents.

I am also grateful to BPB Publications for their guidance and expertise in bringing this
book to fruition. It was a long journey of revising this book with the valuable participation
and collaboration of reviewers, technical experts, and editors.

Finally, I would like to acknowledge the valuable contributions of my colleagues and co-
workers during many years working in the tech industry, who have taught me so much
and provided valuable feedback on my work.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

vii

Preface

Building modern applications is a complex task that requires a deep understanding of
both the latest technologies and effective design principles. Swift and its robust ecosystem
have become essential tools in the development of high-quality applications for Apple’s
platforms.

This book is designed to provide a comprehensive guide to mastering design patterns
in Swift. It covers a broad spectrum of topics, starting with the fundamentals of Swift
programming, moving through advanced concepts such as reactive programming with
RxSwift, and exploring the use of design patterns to build robust, scalable, and maintainable
applications. It also explores how to use Figma and Zeplin effectively.

Throughout the book, you will explore the key features of Swift and how to leverage them
effectively to implement classic design patterns. You will gain insights into best practices
and will be equipped with practical examples to solidify your understanding of each
pattern.

This book is intended for developers who are new to Swift and want to learn how to apply
design patterns in their projects. It is equally valuable for experienced developers seeking
to deepen their knowledge of Swift and enhance their application design skills.

This book will help you acquire the knowledge and skills needed to become a proficient
developer in crafting well-designed applications using Swift. hope you find it informative
and useful.

Chapter 1: Introduction to Swift Programming — This chapter explains the fundamentals
of Swift, Apple’s powerful and intuitive programming language for iOS, macOS, watchOS,
and tvOS development. It explores Swift’s modern syntax and features, which make it
both beginner-friendly and highly efficient for experienced developers.

Chapter 2: Fundamentals of SwiftUI —In this chapter, we will explore the fundamentals of
SwiftUI, Apple’s innovative framework for building user interfaces across all its platforms.
Delves how SwiftUI simplifies Ul development with its declarative syntax, allowing for the
creation of dynamic, responsive, and visually appealing interfaces. We will cover essential
concepts, including views, state management, and data binding, providing you with the
foundational knowledge needed to start building modern and efficient user interfaces in
Swift applications.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

viii

Chapter 3: Why Design Patterns — Here, we will examine the importance of design
patterns in software development, particularly within the Swift programming language. It
explores how design patterns provide reusable solutions to common problems, promoting
best practices and improving code maintainability.

Chapter 4: Creational Design Patterns — This chapter explores Creational Design Patterns,
which focuses on the efficient and flexible creation of objects in Swift applications. It
covers patterns such as Singleton, Factory, and Builder, demonstrating how they provide
solutions to control the instantiation process, enhance scalability, and promote code reuse.
Through detailed explanations and practical examples, this chapter equips readers with
the skills to implement Creational Design Patterns effectively in their Swift projects.

Chapter 5: The Structural Patterns — In this chapter, we will explore Structural Design
Patterns to understand how objects and classes are composed to form larger structures
while ensuring flexibility and efficiency. It covers patterns such as Adapter, Composite,
and Decorator, demonstrating how they facilitate the creation of complex and scalable
systems. Through comprehensive explanations and practical examples, this chapter
provides readers with the knowledge to implement Structural Design Patterns in their
projects effectively.

Chapter 6: The Behavioral Patterns — This chapter covers Behavioral Design Patterns,
which emphasizes the interactions and responsibilities among objects to ensure effective
communication and responsibility distribution. It covers patterns such as Observer,
Strategy, and Command, illustrating how they can optimize the flow of control and data
within Swift applications.

Chapter 7: SOLID Principles — In this chapter, we will examine the SOLID principles, a
set of five fundamental design principles aimed at creating more understandable, flexible,
and maintainable software. It covers the Single Responsibility Principle, Open/Closed
Principle, Liskov Substitution Principle, Interface Segregation Principle, and Dependency
Inversion Principle.

Chapter 8: Architecture Patterns — This chapter explores Architecture Patterns, which
provide high-level structures for organizing and designing software systems. It covers
patterns such as Model-View-Controller (MVC), Model-View-ViewModel (MVVM),
and VIPER, demonstrating how they help manage complexity, enhance scalability, and
improve code maintainability in Swift applications.

Chapter 9: Design System with Effective Use of Zeplin and Figma — This chapter
focuses on creating a cohesive Design System using Zeplin and Figma, two powerful
tools that streamline collaboration between designers and developers. It explores how

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

ix

Design Systems unify visual style, components, and guidelines across projects, ensuring
consistency and efficiency in Swift application development. Readers will learn how
to leverage Zeplin for translating designs into developer-friendly specs and Figma for
collaborative design creation and iteration.

Chapter 10: Reactive Programming with RxSwift — In this chapter, we will explore the
fundamentals of Reactive Programming using RxSwift, a powerful framework for Swift
and iOS development. It covers key concepts such as observables, observers (subscribers),
operators, and schedulers, demonstrating how they enable declarative and responsive
programming paradigms.

Chapter 11: Testing Code with Unit and UI Tests — This chapter explores the fundamentals
of testing Swift code using Unit Tests for isolated component validation and UI Tests for
automated interaction with user interfaces. Readers will learn essential XCTest practices,
including writing assertions and managing test environments effectively.

Chapter 12: Anti-Patterns and Common Mistakes — This chapter highlights detrimental
practices in Swift development, such as tight coupling and spaghetti code, that can impair
scalability and maintainability. By recognizing and addressing these pitfalls with practical
examples and alternative strategies, developers can improve code quality and foster more
efficient Swift applications.

Chapter 13: Conclusion and Looking Ahead - This chapter offers a summary of essential
insights into Swift development, emphasizing best practices and common pitfalls. It also
explores upcoming trends and future directions in Swift, providing developers with a
forward-looking perspective on evolving technologies and methodologies.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/yd14r9k

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Swift-Design-Patterns.

In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to en-
sure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes in-
volved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xii

Table of Contents

1. Introduction to Swift Programming....... 1
INErOAUCHON ... 1
SEUCHUTE ..o 1
ODJECHIVES ... 2
INtroducing SWiftccooiiiiii e 2

Variables and CONSEANES...........ccciiiiiiiiiiiiciciciciicc s 2
VAFIADIES ... 2
COMSEANE v 2

DA EYPES...oveviieiieiiieiicie et 2

OPLIALOTS oot 3

String and string iMterPOLAtIONc.cvovvveveveieiiiiiiiiicieie e 3

COLIECHIONS ..t 3
ATTAYS woviverenicteteetete et 3
DICHONATIES «.vvvvvvveeiicicitcie s 4
SES ot 5

TYPE SAFCLY . 5
TYPE ANNOLALIONS ..ottt 6
TYPE TNFETOIICE. ... 6
Type safety With fUNCHONSccvvvviiviieiiiiiiiiictcccs e 6
Optionals and type SAfety ... 6

Control flow and fUNCHONS.........cciiiiiiiiiiiiiicc e 7

COMETOL FIOTW ... 7
Conditional StALEMENESccoovvviviviieieiiiiiiccc e 7
LOOPS oot 8
FURCHONS .o 9
CLOSUTE ...t 9

Optionals and error handling............ccccccuviciiiriiniciniciccccce e 10

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Need for OPHONAL..........c.ccovvurieieieieiciciciicccee e 10
Understanding the Optional TYPecccevvvviiiiiiininiiiiiiiiiiiiiicccecccsce s 11
Working with OPtionals.............cccevvveiiiciiieieieiiiiiitiicccee e 11
Assigning valyes t0 OPtiONALS...........cccovvvevvveiiiiiiiiiiiiceccc 11
OPHIONAL CRATIING.c....ovvviiiicicicieieei e 12
The Nil Coalescing OPerator...........ccovvviviriruiuiiiiiiiiiiisieiciiiiiisciee s 12

When t0 115e OPHONALS..........cvuvueieiiieiciiiiicicicieieisie e 12

Err0r RANAIING ..ot 13
What are errors in SWiftcccceveioiiiiiiiiiiecciciccce e 13
Protocol and eXteNSIONccciuiiiiiiiiiiicccte 14
PTOTOCOIS ... 14
WAL 1S PFOFOCOL ... s 14
Extensions: Adding extra featurescccoovvervurreieieiniiiiiiiieeseeissccees e 15
WHhat i A1 eXteNSIONc.cvveveieeieieieieiciiecee e 15
Bringing it t0GELREYc.cvcveveveiiiiicicicice e 15
CONCUITEIICY ...ttt b s 17
WHRAL 1S COMCUTTEILCYvuvoviiiivcvcieieieicitccecteie e 17
Grand Central DISPALCHccooveivieiiiiiiiiiicitieeeee et 17
Dispatch QUEUESccvueueveieieieiiiiiiciciciciee et s 17
ASYNC ANA AWATE ... 18
What is async and awaitc.ccccevvveicuresisiiiiiiiccce e 18
AVOIAING PIODICINS ... 19
Automatic Reference COUNtccocveviiiiiciciccc e 21
Retain cycles problem.............cccviciiiiiiiiiiiciiiiiiiccec 22
CONCIUSION ..ottt 24
2. Fundamentals of SwiftUI 25
INEPOAUCHION ..ot 25
SHUCEUTE .. 25
ODJECHIVES ...ttt 25
Introducing SWiftUL.........ccoooiiiiiiiiic s 26
Why does SWIfLUL MAEETcocveveiiiiiiicicicieicicictcce s 26

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Xiv

Views and mMOdifierscceeiiiiiiiiiiiic s 26
Views: The foundation of Ulccccccveueiiiiiiiiiiiiniiiiiiciitiisieeccccs 26
Common views il SWIftULcccvvvueieieieiiiiiiiccice e 27
Creating CUSLOM DICTVS........cvevvvveriiereriiiieniietesisietet e 27
Modifiers: Enhancing views with style and beRAvVIOrcccovvvvvevcvvvcciieiiiiiicinns 28
Chaining MOAIfIETScoveuiuiiiiiiiiiiicieiecct e 28
COMMON MOAIAITS ..o 28
Creating custom MOAIfIErsccovvveueuriciiiiiiiiiicicieciccccte e 29
Combining views and MOAIfIETScvveeueieiiiiiiiccee e 29
State and data binding..........cccoviiiiiiiii s 30
Understanding StALE............ccvveueieieiiiiiiiicccee s 30
@State property WIAPPETccovevvvieveeiiiieriiieieiiiieictcee e 31

WHEN 0 USe @SHALE ... 31

Data Dintding..........cccviiiiiiiiiiiiiiiiiiciciitcis e 31
@Binding propertyy WYAPPET.........ccovvevurieieieiiiiiiiieicicieieieis st 31

When to use @BINding..........ccccoceviiiiiiiiiiniiiiiiiiiiiicicisieeicccs i 32
@ObservedObject property WIAPPETccvvvvvvvercurieieisisisiiieiiicieseesisiesesessanes 32

When to use @ObservedObjectccuueiviiiiiiiiiiiiciiiiiiciciiceeiccc e 33
@StateQbject property WYAPPETcvevweveveieieiiiicicicieieieieieietscisiese e 33

Why 1se @StateObJectcccuviiiiiiiiiiiiiiiciiiiicicicsecc 33

USiNG @SHALEODJECEcoovviiiiiicieieieieicicitcceee st 34

Benefits of @StateObJectccccoviviieieieiiiiiiiiiiiicicieicicicctct e 35

When to use @StateObJeCtccvvvveviiiuiicieieisieiciiicce e 35
Environment and EnvironmentODJectcccovvvviviiieicincciiiiiiiiciiseecccccciieia 35
ENUIFONMEIE oottt 35
EnvironmentODBJeCtccviviiiiiiiiiiiiiiiiiciiitiiciccsec 36

When to use Environment and EnvironmentObjectc.cccovvvvvvvccnninieinnnn. 37
Navigation and 1ayout...........cccooiiiiiiiii e 37
Navigation i SWIEULcceeveieieiiiiiiiicciecee e 38
NAVIGALIONVICW .o 38

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

X0

NAVIGALONLINK ..ot
NAVIGALONSEACK ..o
NAVIGALION 11 LISES ..ottt
Modal NAVIGALIONovveiiiiiiiiiiciccccc s
Layout i1 SWIfEULccuvveviiiiiiiiicicieiccsscce s
SEACKS ..o

GeOMEHTYREAAET ...t
Alignment ANd SPACINGcccvvvvrvereieieieiiiiticcec s

(@10} Tal LT T3 To) s KU RRR

3. Why Design Patterns..

INETOAUCHON ..ot
SEIUCKUTE ..o
ODJECHIVES ...t
What are design Patternscccccuiuiciiiiiiiiciiecicce i
Benefits of using design patterns...........cccooiiiiiiiiiii,
Code quality IMPrOVEMENTccvvvoviviiiiiieieieieicitcccce s
Problem solving and optimization.............c.cccceeeviviiinininiciiiiiiiiiccseccc s
Collaboration and COMMUNICALIONc.cuvvvveveieieiiiiiiiicicieie e
Architectural TNEEGTTEY ...cvvveieeieiiiiiiitciccicicc s
ETYOF TEAUCHON ..o
Learning and skill developmentcccovvvvvveninciiiiiiiiiiiiiiecccccs s

CONICIUSION .ttt ettt e et e e et e e e et e e e seaaeesesateesessesesastessassseesnaseesensseesssaessnnnees

4. Creational Design Patterns.......
INETOAUCHON ..ttt ettt sa b et e b e s b e besseeseessessessensanean
SEIUCEUTE .ottt ettt ettt et et et e st e sae e st ese e st et ensensessessesseeseeneensensensansan
ODJECHIVES ...ttt
Singleton Pattern ...

UISE CAISES ...ttt ettt et ettt et ettt ettt ettt

Singleton implementation in SWiftcccceviiiiiiiiiiiiiiiiiiiic e

Kup ksigzke

39
39
40
41
43
43
44
44
45
45

47

47
47
47
48
48
48
48
48
49
49
49
50

http://helion.pl/page354U~rt/e_42ia_ebook

Practical example................cooeviiiiiiiiiiiiiiiiiic 54

Without Singletorn Patterti..........ocovveieieiiiiiiiiiiiicicisicccccctc e 54

With Singleton PaAttertlcceeviieiiiiiiiiicieseieicccce e 55

Factory Method patternccoiiiiiiiicccece s 56
LIS CAISES c..vvevveteeitetee ettt 56
Factory Method implementation in SWift...........cccoovvviiiiiiiiiiiiiicccccc, 57
Practical example................cooeviiiiiiiiiiiiiiiiiic 58
Without Factory Method patterfl...........ccccvvvioiiiiieiiniciiiiiiiciciccieccccscia 58

With Factory Method patterti............ccvvcccnnniiiiiiiiicieeeecisscccss 59
Abstract Factory pattern ... 61
LIS CAISES c..vvvveteeteteet ettt 61
Abstract Factory implementation in SWift...........cccooeeveviiiiiiiiiiiiiciiccicecn, 62
Practical example................cooeviiiiiiiiiiiiiiiiiic 64
Without Abstract Factory patterncccvvvovviiiciiininciiiiiiiiiciceieicccceseieiiia 64

With Abstract FActory patteril.........ccccceeneiiiiiiiiiceesieiesissccsss s 65

Builder patterni.........ccooiiiiiiii e 68
LIS CAISES c..vvvveteeteteet ettt 68
Builder implementation in SWift.............cccccvviiiiiiiiiiiiiiiiiiiiiiiccec 68
Practical example................cooeviiiiiiiiiiiiiiiiiic 69
Without BUuilder PAtEETTLccveueivieuiiiniciiiicisicicieece ettt 69

WIith BUuilder PAtEertiL..........cvucueueieiiiiiiiiiicicicicicsieccce e 70
Prototype PatteIn ... 72
LIS CAISES c..vovvveteeiietet ettt 72
Prototype implementation in SWift...........cccccovvviiiiiiiiiiiiiiiiiiicccec 73
Practical example...............ccoveeiiiiiiiiiiiiiieiii 73
Without Prototype Patteril..........ccccovvvcieiiicciiiiiiiiiiciciciccicccciccs e 74

With Prototype Patterinccceecieiiiciciiecicieisieiiscccccce e 74

Object POOL Patternccciiiiiiicccc e 76
LIS CAISES c..vovvveteeiietet ettt 76
Object pool implementation in SWIftcccceviiiiiiiiiieiiiiiciiiics e 76
Practical example...............ccooeeiiiiiiiiiiiiiiiii 77

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Without Object POOL PALEETTL.........cocvvviiiiiiiiiiicieicicicicicccice e 78

With Object POOL PAHEITcccucueuiiiiiiiciiiiiciiiiiiciceccc 79
CONCIUSION ..ot 81
5. The Structural Patterns 83
INErOAUCHON ...t 83
SEIUCKUTE ..o 83
ODJECHIVES ...ttt 84
Adapter Pattern.........ccooiiiiiiiicc e 84
Key components of the Adapter Patterl............ccveueieveiciiiiciiieeeiciciciecccceeee 84
UISE CASESvvviieveeiicttie et s 84
Implementing the Adapter Pattern it SWiftccocovvvvcmnnneiiiiiiiccceeeeeen 85
Practical @Xample..........c.occovveivineiiiiiiiiiiciieet st 86
Benefits of the Adapter PAHETTc.cuvvevivivoiiiiiiiicieieeiciccccc e 87
Limitations and cONSIAETAtiONScccvvvivieviiiiiiniiiiiiiiiiicisie s 87
Bridge Pattern........ccoueiiiiiiicicc e 88
LIS CASESvvviieveeicictctieetc et s 88
Implementing the Bridge Patternt in SWift...........cocovvvivccueinniniiiiiiiiccccee e 88
Practical @Xample..........c.occovveivineiiiiiiiiiiciieet st 90
Benefits of the Bridge PAtterl..........cccuvveicieioiciiiiiicicieiciciciccccee e 92
Limitations and cONSIAETAtioNSccvvvvvvieviieiiiniiiiiiiiiiiisie s 92
Composite PAtteITcoiiiiiiiiecc 93
LIS CASESvvviieveeicictcsie ettt s 93
Composite implementation in SWift.........ccoeeeeeiiiiiiiiceisiiiiccee s 93
Practical @Xample..........c.occovieivinciiiiiiiiiiciceet st 95
Benefits of the Composite PAtEEr1lccovvvvcuiucieicieiiiciciiccceeeee 96
Decorator Patterncoiiviiiiiiiiiicic e 96
UISE CASES ...ttt 97
Decorator implementation in SWift............cccccevviiiiiiiiiiiiiiiiiiiiciccssecc 97
Practical example...............ccooeeiiiiiiiiiiiiiiiii 98
Benefits of the Decorator PAtEernccccvucuiiiiiiiiiiiiciciiiciciiicicccseccs e 100
Facade Patternccociiiiiiiiiiiiii e 101

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xX0Uiii

LISE CAISES c..vvveteetet ettt 101
Facade implementation in SWift..........cccovveiviiiiiiiiiiiiiiiccccccc s 101
Practical example.............cccooveeiiiiiiiiiiiiiiiciccc s 103
Benefits of the Facade PAtternnc.cccovueuvvcioiiiiiiiciciiiciicccicciciccseiccccc 105
Flyweight Pattern.........ccoiuiiiiiiiiiiiiciicicic i 105
LIS CASESvvvieviiicietictet ettt 105
Flyweight implementation in SWIftccccovveviiiiiiiiiccesseeetccee e 106
Practical eXample............cccvviineiiinieiiiiciisieisets s 107
Benefits of the FIyweight PAtterilcccovovvivureieisiiiiiiiicciceseecssccie s 109
ProxXy Pattermcoiiiiiiiic e 109
LISE CAISES c...vvveteetet et 109
Proxy implementation in SWiftcccccovvviiniiiiiiiiiiiiinccccc 110
Practical example.............cccooveeiiiiiiiiiiiiiiieiec s 110
Benefits of the Proxy PAtter...........ccccovviiinieiiiiiiiiiiiciciciciciccccisces e 112
CONCIUSION ..ot 112
6. The Behavioral Patterns rerernsneneneneneaeaeaeas 113
INErOAUCHON ..o 113
SEIUCKUTE ..ot 113
ODJECHIVES ...ttt 114
Observer Pattern ..o 114
LISE CASES c..vveveteeetet ettt 114
Implementing Observer Patternt in SWiftc.ccccovvvviiviiiiniiniiiiiiiiciicccccccc 114
Practical exXample.............cccoovvveiiiiiiiiiiiiiiieie s 116
Benefits of the Observer PAtteri.............cccucciioiiiiiiiiicieiciiiciiiiicicisseccccses e 118
Strategy Patternc.coiiiiii 119
LIS CASESvvvveviicietctet ettt 119
Strategy Pattern implementation in SWift..........cccovvvvvveniiiiiiiicceseeeccces 119
Practical eXample............cccvviiniiiiieiiiiiciisicist s 120
Benefits of the Strategy Patteril...........ccccvevoviccucicieiciciciciccccee e 123
Command Pattern.........ccciiiiiiiii e 123
LISE CASES c..vveveteeetet ettt 123

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xix

Command implementation in SWiftccccevvvioiiceciiniicee s 124
Practical eXample............cccvviiineiiinieiiiiciiiciset s 125
Benefits of the Command Patterl............cccoovvemurueieieiniiiiiiiicesesieiessccee e 130
Chain of Responsibility Pattermcccveeueiiiiiriricieiiieiiccieceeceecceseeceneneaes 130
LISE CASES c...vvevieveetete et 130
Chain of Responsibility implementation in SWift...........cccccvvvviviiiiiinniiciciiiiiiiiinns 131
Practical example.............cccooveveiiiiiiiiiiiiiiiiii s 132
Benefits of the Chain of Responsibility Patterti...........cccccccvvvivviiviiininncciiiciiiieines 135
State Pattern ... 135
USE CSES ...ttt 136
State Pattern implementation in SWiftcccccovvvvvvcceieiiiiicccee s 136
Practical eXample............cccvviineiiiieiiiiciiieise s 137
Benefits of the State PAtterl..........cccueuvvvieiiiiiiiiicicieeiciciccce e 142
[terator Patternccoveviiiii 143
LISE CASES c..vveveteetet ettt 143
Iterator IMpPlemeNtaAtiON.........ccccuvveueirieiiiiciiiricteect et 143
Practical example.............cccooveveiiiiiiiiiiiiiiii s 145
Benefits of the Iterator PAtteril.........ccovvieuiiiiiiiiiiiicicicicicicccciccsecc 147
CONCIUSION ..ottt 147
7. SOLID Principles........ vererenenenenenensanaes 149
INErOAUCHON ..o 149
SHUCEUTE ..t 149
ODJECHIVES ...ttt 150
The SOLID PIINCIPLEScucviiuiiiiecieiieieicicieisiceseeceee e saees 150
Single responsibility principle...........cccooiiiii e 150
Examples of 0iolating SRP...........cccovviiiiiininiiiiiiiiiiicicicciciccsci s 151
Refactoring violations in SWift............cccccoveveininiiiiiiiiiiiccecseccce e 152
Identifying and splitting responsibilitiescccovvvvvvveieiniieriiiiiiiiiiiscecccss 153
Open/ closed PrinCiPle ... 153
OPen fOr EXLENSION ...t 154
Closed for MOAIfICAtIONc.oueveveieiiiiiiiiicicieiecstc s 155

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

XX

Benefits of Open/closed Principlecccccuciviviinininisiiinisiciciccsicsececs s 155
Liskov substitution principle ... 156
Understanding LSP ..ottt 156
Breaking LSPc.cooiimiiiiiiiiiiiicicicicicicctt e 156
AdNETTNG 10 LSP ..ot 157

Benefits Of LSP.......ccviiiiiiiiiiicicicicctctctc it 157
Interface segregation principle...........cccooviiiiiiiiii e 158
Understanding ISP ...ttt 159
Applying ISP in Swift through protocol segregation..............cccovvevvvevvrereeieieiiiininnnnes 159
Implementation through segregated protocols.............ccccouvevvvcviiiiininicciiinnnn, 160

Benefits Of ISPououvueiiieicicicitcce s 160
Dependency inversion principle..........cccoviiiiiiiiiccce 161
Understanding DIP.............ccccviivieiiiiiiiiiiciceieieisisiescccse s 161
Advantages 0f DIPccooviiiiiiiiiiiiiiiicicccccce s 163
Case study with real world example..............c.cccovvvvevicceiieiiiiiccee s 164
Initial design: Violation of SOLID principles.............cccccouvvcvvviiiiiiinncccccnnan, 164
Refactoring to adhere to SOLID principlesccocoeeeeeieioioicciciceieisiiiininnnns 165

Testing and SOLID PIincCiplescccoveiriiieininiiiiniiiiniciinceieceseesseeeeee e 167
Role of SOLID principles in testability.............ccccocvcvviiiiiiiiiciiiiiiiiicsccccccns 167
Single responsibility Principleooveeeeieiniciiiiiicceeeee e 167
Open/[closed PriNCIPIE..........cvvecuveiieirieieieietee ettt 168

Liskov substitution principleccccovvoiviiiiiiiciiiiiiiiiiiiicicicccccccsce 169
Interface segregation Principle..........coceeeeeieiiiciiciccieieisiciciccceee e 169
Dependency inversion principle ... 170
CONCIUSION ..ottt 171
8. Architecture Patterns. cererenenenenenensanas 173
INErOAUCHON ..ottt 173
SEIUCKUTE .. 173
ODJECHIVES ...ttt 174
Importance of architectural Patterns..........cccccuvicuriirieciniciniiriciricceceececeseeans 174
Choosing the right architectural PAttern............cccovvvvvivivcciiiiiiiiciiiicccccce 174

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xxi

Overview of architectural patterns..........cccoccucuiiciiiriiiiiciiiicccceea 176
Diverse architectural pattern understanding................ccccccoevevvviviiviiiinniiiiciiiciiiiinns 176
Model-View-Controllercooimrmeeinisiiiiiiiiicicieie e 176
Model-View-VIiewWMOdel...............coovueueieieiiiiiiiiiiiicieieeicicetisee e 177
Model-View-ViewModel-Coordinatorc.cccvveeeeeiiiiiiiiiicicieissssescccicienns 177
View-Interactor-Presenter-Entity-ROULer...........cccovvvviviiviiiiiiiiiiiiciccccn 177

Model-View-Controller ... 178
Historical context 0f MV C......ccooviiiiiiiiiiiiiciiiicciiicicicc e 178
Evolution of MV C 00T HINE.........ccvueieieiiiiiiiicicicicieieie st 178
Principles of MVC......coovoiiiiiiiiiniiiiiiiitiicisice e 179
Core components 0Of MV Ccccvviviicumcieiciciciiiitccccee s 179
Flow of data and interactionsccccevvveeieiniiiiiiiiiiiieiceccccct s 180
ApPLYing MV C it SWIft c...cuvueeeeeieiiiiiiiiiiicciee e 182
Common challenges and solutions with MVC...........ccccccevviiiiiniiiiiiiiniccicicicieinns 184

Model-View-VieWMOodel..........ccccoiiiiiiiiiiiiicc e 185
Need for testable and modular architeCture...........cccovvvvvvieiiiiciciiiiciiiciccecccc 185
Introduction to the ViewModel COMPONENt............cocovvvvueucueieisieiiiiiiiicicicieeieieiesisnnes 185
Components Of MV VM.......ccccviiiiiiiiiiiiiiiiiiiiiiiticiccccct e 185

MOGEL ... s 186
VIBT .. 186
VICWMOGEL ...ttt e 187
Role of data binding in improving communicationccceeevvevveiiiiennccccininnans 187
Utilizing Swift features for MV VM implementation............c.ccccceccvininiciiiicccnnnn. 188
Data flow in MV VM........c.ccooiiiiiiiiiiiiiiiiicciitcectt s 188
Example of MVVM implementation using SwiftUlccovvvvnviiiniinnccecieinn, 189
MOGEL ... e 189
VICWMOGEL ...ttt s 189
VIBT .. 190
EXPLANALION .o 190
Best practices for structuring code in MV VMcccccccvvviiiiiiiiiiiiiiiiciciciiieeine 191
Impact of reactive programming on MV VMcccccoovvvvrenniiiiiiiiccceeeiescsnnns 192

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xxii

Navigating between screens in MV VMcccccovvviicccnnsiiiiiiicicieeeeeescssnns 192
Challenges of MVVM and strategies t0 0VEYCOME.cccvevvviviieinirieiiiiennns 193
MVVMUS. MVC oottt e 193

Model-View-ViewModel-Coordinator............cccccciiiininiiiniiiiiiiciiicccccces 194

Integrating Coordinators in MV VM.........cccccovviviiiinniccininiiiiiiieiiiccieees 195

Best practices for maintaining and evolving MVVM-C architectures 197
View-Interactor-Presenter-Entity-Router.............ccooo 198

History and evolution of VIPER.........cccccccccoivvviiniiiiniiiciiiiiicieicisiciseces 199

Components of VIPERccccccviiiiiiiiiiiiiiciciiiiiiicccciccst s 199

Setting up VIPER i1 1OS PrOJECEScocvoveveveieiiiiiiiiiiiicieieiciccctetee e 200

Data flow in VIPER ..ottt 202

EXample Of VIPErcovoviiiiiiiiiiiiiiiiiiiicicicicccct 203
VAT .o 203
PTESCHIELT oot 204
IREEFACLOT .o 204
ETEIEY covviee s 205
ROULCT ..o 205

Common pitfalls and best practices in implementing VIPERccccccovvvvieiiiiinnnnes 206
COMIMON MISEAKES ... 206
BeSt PIACHICES ..ottt 206
Tips for optimizing and refining VIPER architecturecccocevvvvivvvicicucncnnnn. 207

View-Interactor-Presenter ... 207
Model-VIiew-Updateccooiiiiiiiiiiiiiiiciiiciccceeseee e 208

Components Of MVU ..ottt 208

Key characteristics Of MVUcccueuvieieiiiiiiiiiciccicicicicccce e 208

Use cases for MV UL.......ccccivviiiiiciiiiiiiiiiiciiiciisctec st 209

CONCIUSION ..o 209
9. Design System with Effective Use of Zeplin and Figma..... vereeneneneneneaeaenes 211
INErOdUCHON ... 211
SEIUCHUTE ..o 211
ODJECHIVES ... 212
Introduction to design SYStemS..........ccceviiiiiiiiiiiiiiii e 212

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Understanding the PUIPOSE..........c.cveweveviiiviecieieieieieicictcccteis s 212
Design language SYyStemccccovuiuiiiiiiiiiniicccc e 213
Principles of design [ANGUAZE.cccvvrurueieieieiiiiiicccice et 214
Establishing a design system architeCture............coovevvvccciiiiiiviiiiiiecccciceieeine 215
Components And SEYUCEUTE...........ccvvvueeeieieieiiiiiiccee e 215

Atomic Design prifciplescccovevvviieiiicieiiiiiiiiiiisisecccccts s 216

Design 1anguage elements............cocovovcrueueieinisiiiiiiiiciceeeessccise s 217
TYPOTAPRY ..ot 217

COlLOTS vt 217

TCOTIS ot 218

Spacing and LAYOULcccevevvieiiiiiiiiicccce 218
Creating consistent Ul COMPONENEScoviviviiiviiriiiiiiiniiieiiicieeieensee e, 219
BUEEOTIS .ot 219

TAPULES oo 219
NAVIGALION DATS ..ottt 220

Cards and CONEATNETScveveveviiiiiiiieieieie et 220

Modals and dialogscccoovvvmieieieieiiiiiiiiccee s 221

Design tokens and DAriables..............cccoveeciioiiiiiiiiiiiciicccic 222
Implementation and MANAZEMENTcccceveveiiieiiicieieieiccieccceee e 222

Role of tokens in CONSISENICY........vvviiiiiiiiiiiiiiiiiiiiicicicic s 223

Using Figma for design syStem...........cccoooviiiiiniiiiiiiiiccccccccccecnae 223
Introduction 10 FIQMMAc.ccvvevviuiiiiiiiiiiciiiccicc e 224
Setting up Figma for collaborative deSig.............ccouvevuevieiiiiiiiicicicieisisisiciccciennas 224
Organizing components and StYLEs.............c.ccvvviiiiiiieiciciiiiiiiiiiccceecc i 225
Zeplin for design handoff and collaboration..............cccccuviuriccinicinininciniciiisicciaes 225
OVerVIEW Of ZEPLiM ...ttt 226
Integrating Figma With Zeplinccccovvuviieieiniiiiiiiicicicieeiesescccicieee s 226
Effective collaboration SHAtEGIESccveeriiiiiiiiiiiiiiiiicicisicicice e 227
Prototyping with SWiftUTccccciiiiiiiiiiiiiicccicec i 227
Building interactive prototypes..........cccccueeccioiiiiiiiiicisiciciccsiiisciesseisccses 228
Incorporating design SYStem COMPONENLSoovvivveviuicieieisieiiieiiscccieee e 230

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

XX10

Scaling design systems for large projectsccccevermnnnininininiccccceene 231
Challenges in scaling design SYSEEIMS..........cvriviiiiiiiiiiieiciiiiiiiiccs e 231
Strategies for managing CoMpIeXity..........oovveviiiiiiviceieisieiiiiiiicccee s 232
Team collaboration and cOMMUNICALIONccvveiiiiiiiiiriiiciiciicicce e 232
Example: Design system collaboration workflotw..............ccccovvvvveviiiiiinncceisininnn, 233
Design system documentationcccoeveciioiiiiiiinsiciiiiieiceeees e 234

Importance of AOCUTENIALIONc.cvoveveeeeieieieieiiiiiiccee e 234
Documenting components and patterns...........c.ccevvvcvveviiiicieisiiiciciiiiiiiinieinns 234
Maintenance and UpAatesccevvevvieviviicicseciciiccce s 235

Example: Design system documentation.............c.cccceocceveviveviienscccniiisiiiiiinienns 235

CONCIUSION ..ottt 236

10. Reactive Programming with RxSwift..... . . v 239

INErOAUCHON ..o 239

SEIUCKUTE ..ot 239

ODJECHIVES ...ttt 240

Introduction to reactive programmingcccceeiiiiiiniiininincnc e 240
Exploring the benefits of reactive programmingccceeeeveennieiniisinicceesisnn, 240
Role of RxSwift in reactive programming...........ccccceveveveveinieeeiiiciiiiisiissisiccccsisnns 241

Setting up the project environment for RxSwift with SwiftUl...............ccccc.c...... 241

Fundamentals of RXSWift........ccccooiiiiiiiiiiic e 242
Observables And 0DSETVETS............cvvcviviceiicicieieieieiitccce s 242
Subjects: PublishSubject, BehaviorSubject, ReplaySubjectccccovvvvvviiiiiiiinnnnns 243
Operators: Transforming, filtering, combining, error handlingc.cccevevvvuennnee. 247
Subscriptions and DiSPOSADIESccocveiviveiiiiiiininiciiicisectee 247

Practical examples of using Observables and Operators............cccocovveeeievevivnnes 248

Integrating RxSwift with SWiftUL.........cccoooiiiiiiiiiiiiiiccecceecccees 248
Combining RxSwift and SWiftUL...........ccvveieiiiiiiiiicieicisiiicccccee s 248
Setting up a basic SwiftUI project with RxSWift.........ccccocvvvviiiiiiiiiiiiiiiiiiciiines 248
Binding data between RxSwift and SwWiftUl VIiews..........cccccovvvreeiniiiiiincciceeien, 249
Handling user interactions using RxSwift in SWiftUlL...........cccovvvvivviinnccccninnnn 250

Managing state with RXSWIft........cccceiiiiiiiiiiiiciiiiiciicicicccceeias 252

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

XX0

Leveraging RxSwift for state managementcccoevvvveccvcensiniiiisiscccesen, 252
Implementing ViewModel patterns with RXSWift..........ccccovviviviiiiiiiiiincicccninan, 252
Reacting to state changes in SwiftUI using RXSWiftc.cccoovvvvvvneiiiniininnnns 254
Building reactive UI components with RXSWift.........ccccoeevvvviviiiiinciiiiiiiiiiiinnns 255
Handling asynchronous operations...............cccecueiiciniciniicicinicinincsieesiecesceans 256
Networking with RXSWIftccccvviiiiiiiiiiiiiiiiiiiiiiccec e 256
Combining OPerAtiONScvueveveveviiiiiiiicicieieieiete et 257
Err0r RANAIING ...t 257
Integrating With COMDBINEccveveviiiiiiicieieieiciciiccce e 257
Advanced topics in RXSWiftcccoiiiiiiiiiii 258
Multithreading and concurrency with RXSWIftcooevvvvviviviiicniiiiicccce 258
Hot and cold 0DSErvaBIEsccvovvvevieiiiiiiiieiciciciitceee s 259
Creating and using custom operators in RXSWift.........cccccvvvivivicceensiicccicnn, 259
Resource management and memory 1eaksccoovvvvvvvnniiiiiciiiiiiineccccc 260
Performance optimization techniques for RxSwift with SwiftUlc.ccccevevevivnnnes 260
Migration and adoption strategiesccccveieiiiiiiiniiiniccc e 261
Adoption strategies for teAMS.............cevvvieveieieieiiiiiciicciee s 261
Overcoming common challenges during migration............ccccevvvveveenenciiiciiiiiiiinenns 261
Building a roadmap for gradual adoption of RXSWiftcccovvvvenniniiiiccicccnn, 261
Tips for effectively introducing RXSWIftccccovevvviiiiinciiiiiiiiicicicccccccicc 262
CONCIUSION ..ottt 262
11. Testing Code with Unit and Ul Tests...... . . vererenenenenenensanas 263
INErOAUCHON ..o 263
SHUCEUTE ..t 263
ODJECHIVES ...ttt 264
Introduction to testing in SWift ..., 264
IMportance of teSting.........ccveeeeieieieiiiiiicee e 264
TYPES Of FESES...vveiiiiiiicec 264
Benefits Of teSHNG ..c.vuvveueieieiiiiiiiiicicicee e 265
Setting up testing envViroNMent............cccccvviiiiiiiiiiiin e 266
Configuring XCTOStcvvuvuruereieieiiiiciciciee e 266

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

XXU1

Setting up XCTest frametwork..........cocvvvreeieieiiiiiiiicicesccisicce s 266
Organizing test FATGELSc.cvvvivveiiiieiiiiiiiiicieet e 267
Testing models and business 10Gicccovvriiiiiiiiiiiiiiiice 268
Testing MOdel PrOPErties.........cvciviciiiiiiiiieiiiciiiiciiieie e 268
Testing mModel MEtNOMScccueveviieviiiiiicicieiecictccee s 269
Testing complex BUSINESS [0QIC..........cccvvvviiueueuciiiiiiiiiiiiicieeiciccs s 269
Mocking dependencies...............coouveueurueieieisiiiiiiiiiiciee s 270
Testing view layer with XCUITEStcccccouiueiiiiiriiiiiiieiceieecceeeeeceeeaes 271
Introduction 10 UL teSHIGccueueveviiiiiiiiiiciciciee ettt 272
Setting up Ul testing environimentccccoovvvveivioriinieieinieiieieeicieissisee e, 272
Writing Ul tests with XCUITEStccveeeieieiiiiiiiicicieeieicicicscccee s 272
Handling asynchronous operations in Ul testsccccovvrvciiiciiiviiiincccccinnn 273
Best practices for UL teSHNGcvueueueiiiiiiiiiiiicicicieeietctctccs s 274
Test-Driven Development ..o 274
Understanding Test-Driven Development.............cccocovvvvcruenieieviiiiiicicisssieissisinnnns 274
Benefits Of TDD.......ccovoioiiiiiiiiiciiiciiiiitiiciee s 275
TDD WOTKFIOT. ...ttt 275
Implementing TDD in Swift Projectscccccceciiiiiiiciiiniieiiciicciciscseccccsss 275
EXAMPLE ..o s 276
Code coverage and analysiscccceeiiiinininiiiiiiii e 277
Understanding code COVETAZE.covvviiimiieiiisisiiiiiiciciciee e 277
Generating code COVEYAZE TePOTES........cvoviiiuiuiuciiiiiiiiiiiiciecicicicst e 277
Interpreting code COVETAZe TeSUILS..........cvuvvvueieieieiiiiiicccee e 278
Strategies for improving code COVETAZEoovvviviiiiiiieiiieiiiiiiiiicicesieiccccseseiae 279
EXAMPLE ..o s 279
Advanced testing teChNIQUESc.covcuiiiiiiiiiicccccccc s 279
Parameterized tests............cvveieieiciiiiiiiccce e 280
Test fixtures and set UP[EEATAOTIN . 280
Testing error NANALINGccvueveveviiiiiiiiiicieieiee st 281
TeSting PErfOTTNANCEccvveviieiieciiiiicicieicie s 281
CONCIUSION ..ot 282

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

12. Anti-Patterns and Common Mistakes..... vereeeenerenensaeneananas 283
INETOAUCHON ..ot 283
SEIUCHUTE .o 283
ODJECHIVES ...t 284
Importance of identifying and avoiding anti-patterns..............cccocoeeveenniiinnnnns 284
Common mistakes in SWift SYNtaXccoviiiiiiiiiiiiicce 284

Improper use of OPHONALSc.cvcveveveveiiiiiicieieeccce s 285
Err0r RANAIING ...t 285
Memory Management. ..ottt 286
COMSLGUETICES. ..ottt 289
Design anti-patterns in SWift...........ccooviiii e 289
Massive View CONrOllercoovieuiueieiiieiiiiiiiicicieeeee e 289
Overtise Of SINGIELONScuvucvvevieieiiiicccce s 290
Tight coupling between COMPONENLSccvevveieiiiiiiiiieiciciciiiciccs e 291
Inappropriate use of AelegAtIONccccveuvueieieieiiiiiiiiccceeie e 292
Performance anti-patterns ... 293
Heavy computation on the main thread.................cccoovvcceeneiiiiiiiiccceeeeeesns 293
Excessive string manipulAtionccccceeueiiiiiiiiiiiiiiniciiiiisiiiseiesesccssseseeine 294
Memory-intensive OPerations.............cweveivieieieviieieieiiiieseee e 294
Best practices and remedies.............ccciiiiiininiiiii e 295
Code review and refactoring teCHNIQUES...............cccccovvcueieeiciiiiiiiiicee s 295
Adoption of Swift [anguage featiurescccvvvviiiiviiiiniiciiiiicie e 295
Testing/debugQing SHALEGIES............ccucuiiucuiucicieiieiisie i 295
Refactoring to eliminate anti-patternsccocvvvviviiviininineiiiiciicicieeeccccss 296
CONCIUSION ..ottt 296

13. Conclusion and Looking Ahead . . . vererenenenenssaenenens 297
INErOAUCHON ..o 297
SHUCEUTE ..t 298
SUMMATY .ttt 298

Recap of key inSiQREScccvvvvieieiiiiiiiiiiiicicicccc s 298
Emphasis on importance of design patternis.........cwvevvivivicieessieiiiisiscccesein, 298

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

xXxXviii

Reflection 01 DENefits...........ccwweeieieiiiiiiiicicieecicicte st 298
Acknowledgment of CHAIIENGES.............ccccovvvvviiiiiiiiiiiiiiiiicicieccc 299
Looking ahead: Emerging trends and evolving practices..........ccccccoeueeuriciririccinicnnes 299
Exploration of emerging trends in Swift development...............cccccovvvvviiciiciiiiiiiinnns 300
Discussion on evolving design PAtterns.ccvvvovcceeeieiiiiiiiicceesseescccsenens 300
Swift's evolution on design pattern USAZEcccvvucurueiviviniiiniiiiicesisicicicccicas 301
Continuing education: Resources and further learning...........c.ccccocoeucivicininininicines 301
BOOKSoviiiiiiiiieet e 301
ATHCleS ANA DIOZS ... 302
ONLINE COUTSES ottt 302
COMMUNTEY FOPUINS ..ottt 302
Recommendations for additional reading..............ccccoovvevvvvnicivciciiiiiiiecccccnas 303
Encouragement for 0ngoing learning............ccoowveeveieieiniiiiiiinnisssissisisesccesssses 303
CONCIUSION ..ottt 303
Index305-314

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

CHAPTER 1

Introduction to Swift
Programming

Introduction

Swift was created by Apple to build software for multiple platforms. Thereafter, it rapidly
gained popularity to become the primary coding language for Apple ecosystem. With its
expressive and elegant syntax, combined with safety and performance, Swift is perfect for
mastering design patterns successfully.

Throughout this book, we will explore the intersection of two powerful concepts:
timeless best practices blend with an advanced coding language to create an efficient app
development environment. This book is a thorough handbook for mastering Swift and

related design concepts.

Structure

In this chapter, we will discuss the following topics:

Introducing Swift

Control flow and functions
Optionals and error handling
Protocol and extension
Concurrency

Automatic Reference Count

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

2 Swift Design Patterns

Objectives

After studying this chapter, you will understand all the key concepts of Swift programming.
We will be using these concepts throughout the book to understand various design
patterns.

Introducing Swift

In 2014, Swift succeeded Objective-C, as announced by Apple during its launch in June of
that year. Modernization was required as the current language and Objective-C no longer
kept pace with the increasingly complex demands of software creation. Developers faced
numerous difficulties, and therefore, Swift was created to provide a natural and effortless
user experience.

Variables and constants

In Swift, data is stored and managed using variables and constants. Here is an overview.

Variables

Variables store data that can change over time. To declare a variable, use the var keyword
followed by the variable name and optional type annotations.

In the following line of code, we are declaring age as var of type Int. We are also initializing
it with a value of 25. Here age cannot be optional, which means it will always hold some
value. We cannot assign nil value to age here:

var age: Int = 25

In the following case, age is optional, which means it may or may not hold a value. ? is
used to denote optional type. We can assign nil value to age:

var age: Int? = 25

Constant

Once set, constants are used for storing data that does not change. By employing let, we
declare constants. Following is an example of declaring constant:

let sex: String = "Male"

Data types

Swift has several basic data types, including;:
e Int: Represents whole numbers (for example, 42).

* Double: Represents floating-point numbers with decimal places (for example,
3.14).

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Introduction to Swift Programming 3

e Bool: Represents Boolean values, either true or false.

e String: Represents text and character data (for example, Hello, World!).

Operators

Swift has a selection of operators that can be applied to values, including arithmetic
operators (+, -, *, /), comparison operators (==, =, <,), and logical operators (&&, ||,
1). This enables developers to perform a vast array of operations. The following example
shows "+ and *>" operator in action:

let x = 10

lety =5

let sum = x +y // sum is now 15

let isGreater = x >y // isGreater is true

String and string interpolation

Swift provides powerful tools for working with strings, including string interpolation,
which allows you to embed variables and expressions within string literals. In this
example, we declare name as a String and age as an Int. Then, we interpolate name and
age to declare greeting:

let name = "Rahul"
let age = 30
let greeting = "Hello, my name is \(name) and I am \(age) years old."

Collections

Collections are fundamental data structures of Swift that allow us to store, organize, and
manipulate groups of values. Arrays, Dictionaries, and Sets are the three primary collection
types available in Swift. Each has its own distinct qualities and applications.

Let us explore each of them in detail.

Arrays

An array is an ordered collection of values of the same type, indexed by integers. Since
elements are stored in a specific order, an element can be accessed by its index. Duplicate
values can be present inside an array.

Declaration and initialization

In the following code, we are declaring an array of Strings. Since we are declaring it as var,
we will be able to modify it later:

var players = ["Sachin", "Rahul", "Ganguly"]

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

4 Swift Design Patterns

Accessing elements

In the following code, we are accessing 1* element of the players array, which is Sachin:
let firstPlayer = players[Q]

Modifying arrays

In the following code, we will be modifying the players array by doing add, insert, and
remove operation:

players.append("Robin") // Adding an element to the end
players.insert("Yuvraj", at: 2) // Inserting an element at a specific index
players.remove(at: 1) // Removing an element by index

players[@] = "Ramesh" // Modifying an element

Iterating through arrays

We use for loop to iterate over array, as shown in the following example:
for player in players {

print(player)
}

Dictionaries

A dictionary is an unsorted collection of key-value pairs. Each key must be distinct in a
dictionary. To access value from the dictionary, we use the unique key. It can hold duplicate
values with distinct keys.

Declaration and initialization

We are declaring person as a dictionary with String key type holding name and age as
keys:

var person = ["name": "Nikhil", "age": 25]

Accessing elements

In the following example, we are accessing the name key from the dictionary using subscript:
let name = person["name"]

Modifying dictionaries

In the following code example, we are modifying the dictionary:

person["city"] = "New Delhi" // Adding a new key-value pair

person["age"] = 26 // Modifying a value by key
person.removeValue(forKey: "city") // Removing a key-value pair

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

Introduction to Swift Programming 5

Iterating through dictionaries

The following code example shows how we can iterate the dictionary using the for loop:
for (key, value) in person {

print("\(key): \(value)")
}

Sets

A set is an unsorted collection of distinct values. When the order of the elements is
irrelevant and you need to check for the existence of a value, sets are frequently used.

Declaration and initialization

The following code declares and initializes a Set of type String:
var colors: Set<String> = ["red", "green", "blue"]

Adding and removing elements

Following code shows adding and removing elements from Set:
colors.insert("yellow") // Adding an element
colors.remove("green") // Removing an element

Performing Set operations

We can do mathematical operation such as intersection, union, and so on, as shown in the
following code:

let otherColors: Set<String> = ["blue", "orange"]

let commonColors = colors.intersection(otherColors) // Intersection

let allColors = colors.union(otherColors) // Union

let uniqueColors = colors.symmetricDifference(otherColors) // Symmetric
difference

Checking for membership

To check if an element exists inside the Set, we can use the following code:
if colors.contains("red") {

print("Red is in the set")
}

Type safety

The fundamental idea behind Swift's type safety is that each variable and constant must
have a unique data type. The use of different types of data is strictly regulated by the
Swift compiler. This safeguards against data mixing or misuse by accident, and shields
programs from a variety of common programming mistakes.

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

6 Swift Design Patterns

Type annotations

In Swift, we have the choice to explicitly specify the data type of a variable or constant by
utilizing a type annotation. Although not always required due to Swift's exceptional type
inference, incorporating Type Annotations can enhance code clarity and self-explanatory
nature.

For example, we explicitly declare age as Int in the following code:
var age: Int
age = 30

Type annotations serve a useful purpose by clarifying the expected data type for variables
or constants. However, in Swift, the language itself often deduces the appropriate type
through inference, eliminating the need for explicit annotations. This happens when the
compiler can determine the data type based on its initial value.

Type inference

Swift's type inference system effortlessly determines the data type of a variable or constant
based on its context and initial value. This remarkable feature minimizes the need for
explicit type annotations, leading to cleaner and more concise code. Moreover, it plays a
crucial role in identifying type related errors during compilation, therefore enhancing the
reliability of the code.

In the following code, Swift infers the name is of type String and the score is of type Int:

let name = "Rohit" //Swift infers that name is of type String
let score = 95 // Swift infers that score is of type Int

Type safety with functions

Swift ensures type safety not only for variables and constants but also for function
parameters and return types. When defining functions, users are required to specify
the data types of their parameters and return values. This promotes consistency and
predictability when invoking functions. Following example defines a function, when
invoking the function swift compiler checks function parameters and return type as Int:
func add(x: Int, y: Int) -> Int {

return x +y

let result = add(x: 5, y: 3) // The compiler checks that both x and y are Int

Optionals and type safety

Swift's Optionals play a crucial role in type safety by allowing you to handle the absence
of values explicitly. Optionals indicate that a variable might have a value or might be nil

Kup ksigzke

http://helion.pl/page354U~rt/e_42ia_ebook

