Learn Data Science from Scratch

Mastering ML and NLP with Python in a step-by-step approach

Pratheerth Padman

First Edition 2024 Copyright © BPB Publications, India ISBN: 978-93-55517-036

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author's and publisher's knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

Kup ksi k

Dedicated to

Dad, Mom, and Jithu – for being a constant source of love and support Keerthi – for being my confidante, partner-in-crime, and my rock and Laksh – for being my ray of sunshine, even on the most dreary days

About the Author

Pratheerth Padman is a data scientist who entered the field after an eclectic mix of educational and work experiences, including a stint as a production engineer in an Aluminium Extrusion Company in the Middle East. When his fascination with AI began, he dropped everything to dedicate his life to the field. He has extensive experience in creating video courses under his belt and several live training sessions as well. He also moonlights as an AI consultant and mentor, sharing his expertise with others. Pratheerth holds a Bachelor's degree in Mechatronics Engineering from India and a Master's in Engineering Management from Australia.

About the Reviewer

Supreet, an accomplished data and AI product manager, leads diverse data-driven strategies. With expertise as a Data Scientist and Strategist, she excels in crafting impactful data science use cases and spearheads the development and launch of influential data products. Apart from her strategic prowess, Supreet is a prolific writer and global speaker, sharing insights on data, AI, and product development. Acknowledged for her commitment to empowering women in technology, she serves as a Google WomenTech Makers Ambassador and holds a prominent position among the Top 25 Women in AI.

Acknowledgement

I want to express my deepest gratitude to my family and friends, whose unwavering support and encouragement have been my pillars throughout the journey of writing this book. Their belief in me was the light that guided me through the challenging process of bringing these pages to life.

I am deeply grateful to BPB Publications for their invaluable guidance and expertise in transforming my manuscript into a published reality. The journey, filled with countless revisions, was enriched by the collaborative efforts of reviewers, technical experts, and editors, each bringing a unique perspective that greatly enhanced this work.

A special acknowledgment goes to my colleagues and co-workers from my diverse professional experiences, from my time as a production engineer in the Middle East to my current role in the tech industry. The lessons learned, and the feedback received from these brilliant minds have been instrumental in shaping not only this book but also my approach to data science and AI.

Lastly, I extend my heartfelt thanks to all the readers and viewers who have shown interest in my work. Your support and enthusiasm for this book make all the effort worthwhile. Thank you for joining me on this exciting journey of discovery and learning.

Preface

Data science has revolutionized the way we understand and harness the power of information, fueling innovation and transforming industries across the globe. *Learn Data Science from Scratch* is your comprehensive guide to unlocking the potential of data.

This book provides a thorough exploration of essential data science concepts, tools, and techniques. Starting with the fundamentals of data science, you will progress through data collection, web scraping, data exploration and visualization, and data cleaning and pre-processing. You will build the required foundation in statistics and probability before diving into **Machine Learning** (**ML**) algorithms, deep learning, natural language processing, recommender systems, and data storage systems. With hands-on examples and practical advice, each chapter offers valuable insights and key takeaways, empowering you to master the art of data-driven decision-making.

Upon completing *Learn Data Science from Scratch,* you will have a deep understanding of the data science process, enabling you to apply your newfound skills to real-world projects confidently. Whether you are a beginner or an experienced professional looking to hone your abilities, this book will provide you with the required tools and knowledge. Parte superior do formulárioParte inferior do formulário

Chapter 1: Unraveling the Data Science Universe: An Introduction – Embark on your data science journey with a comprehensive introduction to the field. Explore the historical evolution, key concepts, and the significant impact of data science in shaping our world. We will discuss the roles and responsibilities of data scientists and differentiate between related fields like AI and big data.

Chapter 2: Essential Python Libraries and Tools for Data Science – Gain proficiency in Python for data science, from setting up your environment to mastering essential libraries like NumPy for numerical computing and Pandas for data manipulation. Learn to create visualizations with Matplotlib, Seaborn, and Plotly, and explore Jupyter Notebook for interactive coding.

Chapter 3: Statistics and Probability Essentials for Data Science – Build a foundational understanding of probability theory, learn about different distributions and sampling methods, and cover the principles of hypothesis testing. This chapter equips you with the statistical knowledge crucial for analyzing and interpreting data effectively.

Chapter 4: Data Mining Expedition: Web Scraping and Data Collection Techniques – Discover the art of data collection through web scraping using BeautifulSoup, understand how to harness APIs, and leverage Python libraries for efficient data gathering. The chapter also addresses ethical considerations in data collection, ensuring a responsible approach.

Chapter 5: Painting with Data: Exploration and Visualization – Uncover insights in your data through **Exploratory Data Analysis (EDA)** and descriptive statistics. Learn to use powerful visualization tools like Matplotlib, Seaborn, and Plotly to reveal patterns and trends, enhancing your data storytelling skills.

Chapter 6: Data Alchemy: Cleaning and Preprocessing Raw Data – Learn the critical steps of cleaning and preprocessing data, including handling missing values, normalizing data, and feature engineering. Understand how to tackle duplicate and inconsistent data, and the importance of encoding categorical features for analysis.

Chapter 7: Machine Learning Magic: An Introduction to Predictive Modeling – Dive into the world of **Machine Learning** (**ML**), covering fundamental concepts of supervised and unsupervised learning. Understand essential algorithms, model selection, and evaluation techniques, and learn to balance overfitting and underfitting for robust models.

Chapter 8: Exploring Regression: Linear, Logistic, and Advanced Methods – Explore linear and logistic regression techniques, their assumptions, and applications. Understand how to fit, evaluate, and enhance regression models with regularization techniques and interpret their results for practical insights.

Chapter 9: Unveiling Patterns with k-Nearest Neighbors and Naïve Bayes – Get acquainted with k-Nearest Neighbors and Naïve Bayes algorithms. Learn their inner workings, applications, and fine-tune their performance with distance metrics and hyperparameters for effective classification and regression tasks.

Chapter 10: Exploring Tree-Based Models: Decision Trees to Gradient Boosting – Delve into decision trees, learn about entropy, information gain, tree pruning, and optimization. Explore ensemble methods like random forests and boosting, and understand their ability to handle complex data relationships.

Chapter 11: Support Vector Machines: Simplifying Complexity – Gain insights into **Support Vector Machines** (**SVMs**), including their kernel methods for classification and regression. Learn model tuning and optimization strategies to leverage SVMs' full potential in your data science projects.

Chapter 12: Dimensionality Reduction: From PCA to Advanced Methods – Tackle the challenge of high dimensionality with techniques like principal component analysis

(**PCA**). Learn to visualize complex data and explore advanced methods like t-SNE and UMAP for efficient data representation.

Chapter 13: Unlocking Unsupervised Learning – Explore unsupervised learning with a focus on clustering algorithms like K-means, hierarchical clustering, and DBSCAN. Understand how to evaluate and validate clusters to derive new insights from your data.

Chapter 14: The Essence of Neural Networks and Deep Learning – Embark on a deep learning journey, understanding the basics of artificial neural networks, activation functions, and backpropagation. Dive into TensorFlow, Keras, PyTorch, CNNs, RNNs, and LSTMs, uncovering their applications and complexities.

Chapter 15: Word Play: Text Analytics and Natural Language Processing – Master text analytics and NLP techniques, including text processing, tokenization, feature extraction, sentiment analysis, text classification, topic modeling, and named entity recognition, to handle and interpret unstructured text data effectively.

Chapter 16: Crafting Recommender Systems – Develop skills to create personalized recommender systems using collaborative filtering, content-based filtering, matrix factorization, and hybrid methods. Understand these systems' principles for applications in e-commerce and entertainment.

Chapter 17: Data Storage Mastery: Databases and Efficient Data Management – Learn the fundamentals of databases, including relational and NoSQL systems, and explore SQL and Python libraries for efficient database interaction. Understand data storage formats, serialization, and the role of data warehousing and lakes in data management.

Chapter 18: Data Science in Action: A Comprehensive End-to-end Project – Apply your data science knowledge to a real-world project. Learn how to define a data science problem, collect and prepare data, select the best models, evaluate their performance, and communicate results effectively. Understand the deployment, monitoring, and maintenance of models.

Code Bundle and Coloured Images

Please follow the link to download the *Code Bundle* and the *Coloured Images* of the book:

https://rebrand.ly/39fbd7

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Learn-Data-Science-from-Scratch.

In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications' Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline. com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At **www.bpbonline.com**, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

x

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at **business@bpbonline.com** with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit **www.bpbonline.com**. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit **www.bpbonline.com**.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

1.	Unraveling the Data Science Universe: An Introduction	1
	Introduction	1
	Structure	1
	Objectives	2
	What is data science	2
	Data science: A fusion of fields	2
	History and evolution of data science as a field	3
	The data science process	4
	A day in the life of a data scientist	6
	How data science is shaping our world	7
	Differences between Artificial Intelligence, big data, and data science	9
	Conclusion	10
	Points to remember	10
	Multiple choice questions	11
	Answers	11
	Questions	11
2.	Essential Python Libraries and Tools for Data Science	13
	Introduction	13
	Structure	13
	Objectives	14
	Setting up your developer environment	14
	Basics of NumPy	15
	Array creation and manipulation	15
	Mathematical operations with NumPy	17
	Broadcasting	18
	Advanced NumPy techniques	19
	Array reshaping	19

Stacking	
Splitting	
Pandas for data manipulation	
Introducing series and DataFrame	
Reading and writing data from various file formats	
Data cleaning and pre-processing	
Matplotlib, seaborn, and Plotly for data visualization	
Basics of Matplotlib	
Seaborn for advanced visualization	
Interactive visualizations with Plotly	
Choosing the right visualization	
Jupyter Notebook essentials	
Launching and understanding the interface	
Code, Markdown, and raw cells	
Executing code and displaying results	
Sharing and exporting notebooks	
Scikit-learn: Key to streamlined Machine Learning	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
3. Statistics and Probability Essentials for Data Science	
Introduction	
Structure	
Objectives	
Probability theory	
Basic probability concepts	
Events	
Sample space	
Conditional probability and Bayes' theorem	

Conditional probability	
Bayes' theorem	
Discrete and continuous random variables	
Expectation, variance, and covariance of random variables	
Expectation	
Variance	
Covariance	
Distributions and sampling	
Probability distributions	
Central limit theorem	
Sampling techniques	
Hypothesis testing	
Null and alternative hypotheses	
Test statistics and p-values	
Common hypothesis tests: Z-test, t-test, chi-square test, and ANOVA	
Type I and type II errors	
Conclusion	
Points to remember	51
Multiple choice questions	
Answers	
Questions	
4. Data Mining Expedition: Web Scraping and Data Collection Techniq	ues 53
Introduction	
Structure	
Objectives	
Sources of data	
Publicly available datasets	
Government portals	
Research institutions	
Web scraping	
APIs	

Proprietary databases	
Web scraping with Beautiful Soup and Requests	
Installing and importing the Beautiful Soup and Requests libraries	
Fetching web page content using Requests	
Parsing HTML with Beautiful Soup and extracting data	
Handling pagination, AJAX, and other web scraping challenges	
APIs and Python libraries for data collection	
RESTful APIs and their usage in data collection	
Authentication methods	
Popular Python libraries for working with APIs	
Parsing and handling JSON, XML, and other data formats	
Ethical considerations during data collection	
Respecting website terms of service and the robots.txt file	
Adhering to API rate limits and usage restrictions	
User privacy and data anonymization	
Ethics and law in data management	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
5. Painting with Data: Exploration and Visualization	
Introduction	
Structure	
Objectives	
Exploratory data analysis	
Why do we need exploratory data analysis	
Cleaning and preprocessing data for exploratory data analysis	
Univariate and multivariate analysis techniques	
Descriptive statistics	
Measures of central tendency: mean, mode and median	

	74
Skewness and kurtosis	75
Understanding descriptive statistics in data analysis	
Data visualization with Matplotlib, seaborn, and Plotly	76
Getting acquainted with Matplotlib, seaborn, and Plotly	77
A guide to visualizing data with common chart types	77
Customization techniques for engaging visualizations	
Creating interactive visualizations with Plotly	
Discovering trends and relationships	
Unraveling linear and non-linear relationships	
Unraveling time series data: Trends and seasonality	
Outliers: Uncovering their impact on data analysis	
Revealing hidden patterns through visualization techniques	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
6. Data Alchemy: Cleaning and Preprocessing Raw Data	
6. Data Alchemy: Cleaning and Preprocessing Raw Data	
Introduction	91 91
Introduction	
Introduction Structure Objectives	
Introduction Structure Objectives Handling missing data	91 91 92 92 92 92
Introduction Structure Objectives Handling missing data Detecting missing data	91 91 92 92 92 92 92 92 93
Introduction Structure Objectives Handling missing data Detecting missing data Strategies for tackling missing data	91 92 92 92 92 92 93 93 94
Introduction	91 92 92 92 92 92 93 93 94 95
Introduction Structure Objectives Handling missing data Detecting missing data Strategies for tackling missing data Pandas and NumPy for missing data handling Data transformation and normalization	91 92 92 92 92 92 93 93 94 95 95
Introduction Structure Objectives Handling missing data Detecting missing data Strategies for tackling missing data Pandas and NumPy for missing data handling Data transformation and normalization Importance of data transformation and normalization	91 92 92 92 92 93 93 94 95 95 95 95

Addressing duplication and data inconsistencies	
Spotting and eliminating duplicate entries	
Handling inconsistent and incorrect data	
Feature engineering and selection	
Role of feature engineering and selection	
The art of crafting features	
Picking the A-team: Methods for effective feature selection	
Feature engineering with Pandas and Scikit-Learn	
Encoding categorical features	
Rationale for encoding categorical features	
Diverse pathways of encoding: One-hot and ordinal techniques unveiled	
Conjuring the magic of encoding: A pythonic approach	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	110
Questions 7. Machine Learning Magic: An Introduction to Predictive Modeling	
•	111
7. Machine Learning Magic: An Introduction to Predictive Modeling	111 111
7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction	111 111 111
7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction Structure	111 111 111 112
7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction Structure Objectives	
7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction Structure Objectives Supervised and unsupervised learning	111 111111112112112112
7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction Structure Objectives Supervised and unsupervised learning <i>Supervised vs. unsupervised learning</i>	111 111 112 112 112 112 113
7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction Structure Objectives Supervised and unsupervised learning <i>Supervised vs. unsupervised learning</i> <i>Impact of supervised and unsupervised learning</i>	
 7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction	
 7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction	
 7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction	111 111111112112112112112112112115116
 7. Machine Learning Magic: An Introduction to Predictive Modeling Introduction	

Grading the machine: Understanding model evaluation metrics	119
Evaluating classification models	
Evaluating regression models	
Overfitting and underfitting	
Striking the right balance: Overfitting and underfitting explained	
Techniques to tackle overfitting and underfitting	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
8. Exploring Regression: Linear, Logistic, and Advanced Methods	
Introduction	
Structure	
Objectives	
Linear regression	
What is linear regression	
Understanding linear regression: Four fundamental assumptions'	
Building a linear regression model: An overview	
Coefficients, predictions, and model evaluation	
A step-by-step guide to linear regression with Python's scikit-learn	
Logistic regression	
Logistic regression: Deciphering binary decisions	
The sigmoid function: An essential cog in logistic regression	
Building a logistic regression model: An overview	
Deciphering coefficients and model evaluation in logistic regression	
Logistic regression analysis: A study of the Titanic dataset	
Harnessing regularization: Techniques to rein in your model	
Balancing variance, bias, and overfitting	
Navigating the complexity maze: Unravelling regularization	
Regularization rumble: Lasso, Ridge, And Elastic Net	

	Implementing regularization techniques in Python with Scikit-Learn	139
	Conclusion	140
	Points to remember	141
	Multiple choice questions	141
	Answers	142
	Questions	142
9.	Unveiling Patterns with k-Nearest Neighbors and Naïve Bayes	143
	Introduction	143
	Structure	143
	Objectives	144
	Understanding the k-Nearest Neighbors algorithm	144
	Unraveling the threads of k-Nearest Neighbors	144
	Exploring distance metrics: Euclidean to Hamming	145
	How do distance metrics affect the performance of KNN	146
	Constructing the KNN model: A step-by-step approach with Python	147
	Naïve Bayes classifier	149
	Unraveling the simplicity and power of Naïve Bayes	149
	Crafting a Naïve Bayes classifier from scratch with Python	150
	Deciphering Naïve Bayes: Understanding outputs and performance evaluation	152
	Hyperparameter tuning	153
	What are hyperparameters	153
	Why does hyperparameter tuning matter	153
	Hyperparameter tuning: Grid and random search methods	154
	Fine-tuning the k-Nearest Neighbors model	155
	Fine-tuning the Naïve Bayes model	156
	Conclusion	157
	Points to remember	158
	Multiple choice questions	158
	Answers	159
	Questions	159

10.	Exploring Tree-Based Models: Decision Trees to Gradient Boosting	161
	Introduction	
	Structure	161
	Objectives	
	Decision trees	
	Getting acquainted with decision trees	
	Constructing a decision tree	
	The twin branches: Classification and regression trees	
	Entropy and information gain	
	Diving into entropy: Unraveling chaos in decision trees	
	Demystifying information gain	
	Role of entropy and information gain in constructing a decision tree	
	Tree pruning and optimization	
	Pruning a decision tree	
	TL	1(0

	Hyperparameters in decision trees	
	Crafting and refining a decision tree	
	The power of ensemble methods in machine learning	
	Embarking on the ensemble journey	
	Understanding the bagging method	
	Unearthing the forest within data	
	Boosting power: The strengths and shortcomings of boosting	
	Boosting with a twist: Introducing gradient boosting	
	Picking the right ensemble method	
	Conclusion	
	Points to remember	
	Multiple choice questions	
	Answers	
11.	Support Vector Machines: Simplifying Complexity	
	Introduction	
	Structure	
	Objectives	

	Introduction to support vector machines	180
	Mastering the mechanics of support vector machines	180
	Uniqueness of SVM in the machine learning ensemble	181
	Numerical craft behind support vector machines	181
	The art of drawing lines: Hyperplanes and support vectors	182
	Understanding kernel methods	183
	The power of kernel functions	183
	Data transformation with kernel methods	183
	Kernel functions: Linear, polynomial, and radial basis	184
	Choosing the right kernel for your SVM	185
	SVM for classification and regression roles	186
	SVM in binary and multiclass scenarios	186
	SVM in the world of regression	187
	Real-world SVM: From preprocessing to evaluation	187
	Handling imbalanced data in support vector machines	190
	Perfecting your support vector machines	191
	Impact of the C parameter and kernel coefficients on your SVM model	191
	Balancing the bias-variance trade-off in SVM	192
	Conclusion	193
	Points to remember	194
	Multiple choice questions	194
	Answers	195
	Questions	195
12.	Dimensionality Reduction: From PCA to Advanced Methods	197
	Introduction	
	Structure	
	Objectives	
	Understanding the problem of high dimensionality	
	The curse of dimensionality	
	High-dimensionality at play: Encounters in the real world	
	Tackling high-dimensional data	200

Principal component analysis	
Decoding principal component analysis	
Understanding PCA: The role of eigenvalues and eigenvectors	
PCA in action: A step-by-step guide	
Tuning into the right number of dimensions in PCA	
Visualizing high-dimensional data	
High dimensional data: Visualization techniques and challenges	
Real-world high-dimensional data visualization	
Exploring beyond PCA: t-SNE and UMAP	
t-SNE unveiled: Functionality and use cases	
Unfolding the UMAP technique: Operation and best use scenarios	
PCA, t-SNE, and UMAP: A comparative analysis	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
13. Unlocking Unsupervised Learning	
Introduction	
Structure	
Objectives	
K-means clustering	
Exploring K-means: From principles to practice	
The enigma of optimal K	
Bringing K-means to life: A real-world clustering journey	
Hierarchical clustering	
Intricacies of hierarchical clustering	
Hierarchical clustering: Exploring linkage criteria	
Understanding DBSCAN: A comprehensive guide	
Navigating the dendrogram: Hierarchical clustering in action	
DBSCAN and other density-based methods	

DBSCAN clustering: Unveiling its unique approach	222
Tuning DBSCAN	223
Putting DBSCAN into action	
Cluster evaluation and validation	
Importance of cluster validation	225
Cluster validation with internal indices	225
Cluster validation with external indices	
Ensuring robust clusters with stability-based validation	
Demonstrating cluster evaluation and validation	
Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
14. The Essence of Neural Networks and Deep Learning	231
Introduction	
Structure	
Objectives	
Deep learning: Beyond conventional machine learning	
Deep learning as artificial intelligence's game changer	
Deep learning as artificial intelligence's game changer	
Transformative applications of deep learning in the modern world	
Introduction to deep learning libraries	
Navigating TensorFlow, Keras, and PyTorch	
The seamless integration of Keras and TensorFlow	
Installing TensorFlow and PyTorch	
The intricate web of artificial neural networks	
Mimicking the human brain with artificial neurons	
Layers of an artificial neural network	
The art of learning in neural networks: Weights, biases, and beyond	
Steering ANNs with loss functions, optimizers, and epochs	

Exploring activation functions and backpropagation in ANNs	
Activation functions: The spark that ignites neural networks	
Exploring top activation functions in neural networks	
Backpropagation and gradient descent in neural networks	
Importance of data and feature engineering in deep learning	
Unlocking deep learning's potential with pristine data	
Prepping data for the deep learning forge	
Feature crafting versus self-learning	
Managing overfitting and complexity in deep learning	
The role of hyperparameters in deep learning	
Overfitting: A deep learning perspective	
Dodging the overfitting bullet in deep learning	
Convolutional neural networks	
The art and architecture of convolutional neural networks	
Image data processing with convolutional neural networks	
CNNs in action: Revolutionizing industries with visual intelligence	
Implementing CNNs on MNIST with Keras	252
Recurrent neural networks	
The power of recurrence: Unfolding the RNN architecture	255
The utility of recurrent neural networks in sequential data	255
RNNs: Tackling the hurdles of vanishing and exploding gradients	
Putting RNNs to work: Real-world applications	
Deciphering sentiments: Implementing a basic RNN with Keras	
Long short-term memory networks	259
Diving deep into LSTM networks	
Cracking the long-term dependency problem with LSTM	
LSTM gates: The secret sauce of long memory	
Where LSTMs shine: A glimpse of practical applications	
Sentiment analysis on IMDB movie reviews with LSTM	
Conclusion	
Points to remember	

	Multiple choice questions	
	Answers	
	Questions	
15.	. Word Play: Text Analytics and Natural Language Processing	
	Introduction	
	Structure	
	Objectives	
	Text processing and tokenization	
	The intricacies of textual data in natural language processing	
	Refining the raw: Text preprocessing essentials	
	Chopping blocks of text: The art of tokenization	
	Pruning words to their roots: Unraveling stemming and lemmatization	
	Assigning roles to words: Unveiling parts-of-speech tagging	
	<i>Text cleaning and tokenization using natural language toolkit and spaC thon</i>	0 0
	The transformation journey: From text to features	
	Bag-of-words: Turning words into numbers	
	Weighing words with TF-IDF: Balancing frequency and importance	
	Embedding semantics with Word2Vec and GloVe	
	ELMo and BERT: The rise of context in word embeddings	
	Navigating text data: Bag of words, TF-IDF, and Word2Vec	
	Decoding emotions: Sentiment analysis and text classification	
	Navigating the sea of opinions with sentiment analysis	
	Mastering text classification	
	Bringing sentiment analysis and text classification to life with Python	
	Topic modeling and entity recognition	
	Introduction to topic modeling	
	Unearthing context with named entity recognition	
	Cracking topics and entities: A Python code walkthrough	
	Conclusion	
	Points to remember	

Multiple choice questions	
Answers	
Questions	
16. Crafting Recommender Systems	
Introduction	
Structure	
Objectives	
Introduction to collaborative filtering	
User-based collaborative filtering	
Decoding item-based collaborative filtering	
Measuring similarities in recommender systems	
Sparsity and scalability in collaborative filtering	
Building your first collaborative filtering systems in Python	
User-based collaborative filtering	
Item-based collaborative filtering	
Personalized proposals: Understanding content-based filtering	
The harmony of user and item profiles	
Understanding feature extraction and selection	
The pros and cons of content-based filtering	
Breaking the filter bubble and enriching content analysis	
Building content based recommendations in Python	
Matrix factorization and SVD in recommender system	
Introduction to matrix factorization	
Singular value decomposition	
Breaking down the user-item matrix into latent factors	
Pros and cons of matrix factorization and SVD	
Tackling sparsity with matrix factorization	
Cracking latent factors: TruncatedSVD in action with Python	
Synergy in recommendation: Hybrid systems	
Understanding hybrid recommender approaches	
Overcoming limitations for superior recommendations	

	Hybrid recommender systems in action	305
	Crafting a hybrid recommender with Python: Step-by-step guide	306
	Conclusion	308
	Points to remember	308
	Multiple choice questions	309
	Answers	310
	Questions	310
17.	Data Storage Mastery: Databases and Efficient Data Management	311
	Introduction	311
	Structure	311
	Objectives	312
	Exploring database types: Relational and NoSQL databases	312
	Data housekeepers: The role of databases in data science	312
	SQL and NoSQL: Two sides of the database coin	313
	Breaking down relational databases: Tables, rows, columns and keys	313
	Diversifying your data storage: NoSQL databases	314
	Choosing between SQL and NoSQL	315
	Database showdown: An overview of popular choices	315
	Python meets SQL: Mastering database interaction	316
	Exploring SQL: Definition, maipulation, and control	316
	Unleashing SQL's potential: Joins, subqueries, indexes, and stored procedures	317
	Navigating databses in Python: SQLAlchemy, SQLite3, PyMango	318
	Talking to databases with Python: A hands-on guide	318
	The language of data: CSV, JSON, XML, Parquet, and Excel	320
	Weighing the options: Advantages and drawbacks of different data formats	320
	Python data format handling: CSV, JSON, XML, Parquet, Excel	321
	Unpacking serialization: Moving and storing data efficiently	323
	Journey through serialization formats: Pickle, JSON, MessagePack	324
	Data warehouses and data lakes: A comprehensive guide	
	Exploring Google BigQuery and Amazon Redshift	326
	Hadoop: The cornerstone of data lakes and big data management	327

Conclusion	
Points to remember	
Multiple choice questions	
Answers	
Questions	
18. Data Science in Action: A Comprehensive End-to-end Project	
Introduction	
Structure	
Objectives	
Defining a data science problem	
Understanding the business context	
Formulating the problem statement	
Identifying key stakeholders and understanding their expectations	
Establishing success metrics	
Data collection and preparation	
Dataset attribution	
From source to solution: The journey of data collection	
Polishing the mirror: The art of data cleaning	
Handling missing values	
Data type mismatch	
Logical consistency	
Duplicates	
Unearthing data treasures: The power of exploration	
Statistical summaries	
Data visualizations	
Sculpting data: The craft of feature engineering	
Creating new features	
Encoding categorical variables	
Partitioning data: Carving out training, validation, and test sets	
From selection to evaluation: Charting the model's journey	

Hotel booking analysis: Choosing the right classifier	351
Assessing predictions: The hotelier's guide to model metrics	352
Exploring the hotel bookings landscape with four models	353
Hyperparameter tuning	362
Communication of results	364
Crafting understandable narratives for all stakeholders	365
Translating findings into actionable steps	365
Deployment, monitoring and maintenance of a model	368
Exploring model deployment platforms	368
Crafting application programming interfaces for seamless access	369
Embracing model versioning and rollback	370
Detecting drifts and setting retraining rhythms	370
Ensuring the model's longevity and relevance	371
Conclusion	372
Points to remember	372
Index	373-385

Kup ksi k

CHAPTER 1 Unraveling the Data Science Universe: An Introduction

Introduction

Welcome to the fascinating world of data science, where insights are extracted from the vast sea of information surrounding us. In this chapter, we will demystify data science, get a sneak peek into a day in the life of a data scientist, and delve into the data science process, familiarizing you with the key concepts and terminology you will need throughout your journey. This foundational knowledge will provide a strong platform for understanding the subsequent chapters and equip you with the essential tools to become a successful data scientist.

Structure

In this chapter, we will discuss the following topics:

- What is data science
- Data science: A fusion of fields
- History and evolution of data science as a field
- The data science process
- A day in the life of a data scientist

- How data science is shaping our world
- Differences between Artificial Intelligence, big data, and data science

Objectives

By the end of this chapter, you should have a solid understanding of the data science landscape, including its core components and processes. This foundation will serve as a springboard for diving into the more technical aspects of data science in the upcoming chapters.

What is data science

Data science is like a captivating puzzle, where different pieces from various disciplines come together to unveil hidden patterns and insights. At its core, data science is the art and science of extracting valuable information from data by employing techniques from mathematics, statistics, computer science, domain expertise, visualization and communication, and ethical considerations.

Data science: A fusion of fields

Let us expand on this phrase and explore the key components that contribute to the vibrant mosaic of data science and its interdisciplinary nature in depth:

- **Mathematics and statistics:** These pillars of data science provide the theoretical foundation and backbone for understanding patterns and relationships within data. Mathematical concepts, such as linear algebra and calculus, play a vital role in developing and optimizing algorithms, while statistical methods help quantify uncertainties, make predictions, and draw inferences from data.
- **Computer science:** In data science, computer science acts as a bridge between theory and practice. It brings mathematical and statistical concepts to life through programming, algorithms, and efficient computational methods. Additionally, computer science equips us with tools for data storage, processing, and retrieval, enabling us to deal with vast amounts of data and derive meaningful insights.
- **Domain expertise:** Like an indispensable compass, domain expertise guides data scientists in their quest to solve real-world problems. By incorporating subject matter knowledge, data scientists can ask relevant questions, identify appropriate data sources, and interpret results within the context of their specific industry or field. This allows for more impactful and targeted analyses that drive informed decision-making.
- **Visualization and communication:** A key aspect of data science is the ability to translate complex findings into digestible, compelling stories. This involves

leveraging data visualization techniques to create informative and engaging graphics, and honing communication skills to effectively convey insights to diverse audiences.

• Ethical considerations: As data science continues to shape our world, it is crucial to recognize the ethical implications of our analyses and decisions. This interdisciplinary field must constantly balance privacy, fairness, transparency, and accountability, ensuring that data-driven insights are used responsibly and for the greater good. Take a look at the following figure:

Figure 1.1: Data science: A fusion of fields

Data science is a synergistic fusion of diverse fields, each contributing its unique strengths and perspectives. This interdisciplinary character is what empowers data scientists to navigate complex problems, draw valuable insights, and make a lasting impact in today's data-driven world.

History and evolution of data science as a field

The story of data science is a fascinating one, full of exciting twists and turns that have shaped it into the dynamic field we know today. So, let us journey back in time and explore how data science has evolved over the years!

Once upon a time, in the early 20th century, statistics and probability theory were taking shape. Visionaries like *Ronald A. Fisher* and *Karl Pearson* laid the foundation for modern data analysis techniques, which would later become essential for data science.

Fast forward to the 1940s and 1950s, when the invention of computers revolutionized the world of data: pioneers like *Grace Hopper* and *Alan Turing* crafted programming languages and algorithms that would make data processing more efficient than ever before. As decades passed, databases emerged, making it easier to manage and retrieve massive amounts of data.

But the excitement did not stop there. In the 1980s and 1990s, data mining and **Machine Learning** (**ML**) burst onto the scene. Researchers like *Tom Mitchell, Geoffrey Hinton,* and *Yann LeCun* advanced neural networks and deep learning, unlocking new possibilities for extracting insights from data.

Things got even more interesting in the early 2000s, when the internet and digital devices caused an explosion of data, giving birth to the era of big data. Companies like Google, Facebook, and Amazon harnessed the power of big data to revolutionize their products and services, sparking a massive demand for data scientists.

By the 2010s, data science had become its own distinct field. The *Harvard Business Review* called being a data scientist the sexiest job of the 21st century in 2012! As more people pursued careers in data science, educational institutions and online platforms began offering specialized courses and degrees to meet the demand.

That brings us to today, where data science continues to evolve at breakneck speed. Cuttingedge fields like natural language processing, computer vision, and reinforcement learning are pushing the boundaries of what is possible. The future of data science is bright, with endless opportunities to make an impact across industries and worldwide.

As we embark on this thrilling adventure through the world of data science, we must appreciate the rich history that has shaped it into the vibrant and ever-changing field we know and love today.

The data science process

As we have explored the history and evolution of data science, the field has come a long way since its beginning. This rich heritage has shaped the techniques and methodologies that modern data scientists use to extract valuable insights from data. Now that we have a deeper appreciation for the journey data science has taken, let us delve into the core process that drives the work of data scientists today.

The data science process is like an exhilarating adventure, where you navigate through a series of interconnected stages, each offering its own set of challenges and rewards. This journey takes you from the initial spark of curiosity to the ultimate satisfaction of solving real-world problems using data-driven insights. Let us walk through the key steps of the data science process, exploring how they all come together to form a cohesive and structured approach:

- 1. **Problem definition:** Every great adventure begins with a clear purpose. In data science, this means understanding the problem you are trying to solve. You will collaborate with stakeholders to identify objectives, define goals, and translate them into actionable data-driven questions. This step lays the groundwork for the entire process and ensures that your efforts align with your organization's needs.
- 2. **Data collection:** With a well-defined problem, you will set out on a quest for data. This stage involves gathering relevant information from various sources, such as

databases, APIs, web scraping, or third-party providers. You must consider data quality, reliability, and representativeness, as these factors can significantly impact your analysis and subsequent insights.

- 3. **Data preparation:** Once you have collected the data, it is time to roll up your sleeves and dive into some data wrangling. This stage is all about cleaning, organizing, and transforming the raw data into a structured and usable format. You will address issues like missing values, inconsistencies, and outliers, ensuring that your dataset is primed for analysis.
- 4. **Exploratory data analysis:** With your data neatly prepped, you will be ready to embark on a journey of exploration. During **Exploratory data analysis (EDA)**, you will employ visualization techniques and summary statistics to uncover patterns, trends, and relationships within the data. This stage is essential for generating hypothesis, informing your modelling choices, and identifying potential pitfalls or areas of interest.
- 5. **Model development:** Now comes the moment of truth: building and training machine learning models to answer your data-driven questions. You will experiment with different algorithms, techniques, and parameter settings, iterating and refining your models to maximize their predictive power or explanatory capabilities.
- 6. **Model evaluation:** At this stage, you will put your models to the test, assessing their performance using appropriate metrics and validation techniques. This step is crucial for determining the reliability and robustness of your models, ensuring that they generalize well to unseen data and provide meaningful insights.
- 7. **Model deployment:** With a trustworthy and well-performing model at hand, it is time to bring your creation to life. You will collaborate with engineers and other team members to deploy your model into a production environment, integrating it with existing systems or building custom applications to address specific use cases.
- 8. **Communication and presentation:** Finally, you will weave together the story of your data science adventure, distilling complex findings into clear, compelling narratives. This stage involves crafting engaging visualizations and presenting your insights to stakeholders in an informative and actionable manner.
- 9. Model maintenance and monitoring: Just like a well-tuned car, your model requires regular maintenance to keep performing at its best. Stay ahead of the game by updating your model with fresh data and giving it a tune-up as needed. Keep a keen eye on your model's performance by tracking essential metrics and setting up alerts for any unexpected dips or hiccups. Be on the lookout for model drift, which can happen when the model's predictions start to lose accuracy due to shifts in data patterns. By being a vigilant monitor, you will be able to spot any potential issues early on and address them promptly, ensuring that your model remains a reliable tool for data-driven decision-making.